
Monday, 7 November 2005

W3: Uncertainty Reasoning
for the Semantic Web

Organisers:
Paulo C. G. Costa,
Kathryn B. Laskey,
Kenneth J. Laskey,
Michael Pool

ISWC 2005 could not take place without the generous support of the following sponsors

Super Emerald Sponsors

Gold Sponsors

Silver Sponsors

ISWC 2005 Organising Committee

General Chair Mark Musen, Stanford University

Research Track Co-Chair Yolanda Gil, Information Sciences Institute

Research Track Co-Chair Enrico Motta, The Open University

Industrial Track Chair V Richard Benjamins, iSOCO, S.A.

Workshop Chair Natasha F Noy, Stanford University

Tutorial Chair R.V. Guha, Google

Poster & Demo Chair Riichiro Mizoguchi, Osaka University

Semantic Web Challenge Michel Klein, Vrjie Universiteit Amerdam

Semantic Web Challenge Ubbo Visser, Universitat Bremen

Doctoral Symposium Co-Chair Edward Curry, National University of Ireland, Galway

Doctoral Symposium Co-Chair Enda Ridge, University of York

Meta-Data Chair Eric Miller, W3C

Sponsorship Chair Liam O’Móráin, DERI Galway

Local Organising Co-Chair Christoph Bussler, DERI Galway

Local Organising Co-Chair Stefan Decker, DERI Galway

Local Organiser Brian Cummins, DERI Galway

Webmaster Seaghan Moriarty, DERI Galway

Web Design Johannes Breitfuss, DERI Innsbruck

URSW 2005 Presentations

Technical Papers

Is It Worth a Hoot? Qualms about OWL for Uncertainty Reasoning...................................... 1
Mike Pool, Francis Fung, Stephen Cannon, Jeffrey Aikin

A Fuzzy Semantics for Semantic Web Languages .. 12
Mauro Mazzieri, Aldo Franco Dragoni

PR-OWL: A Bayesian Ontology Language for the Semantic Web....................................... 23
Paulo Costa, Kathryn Laskey, Kenneth Laskey

Discovery and Uncertainty in Semantic Web Services ... 34
Francisco Martin-Recuerda, Dave Robertson

Ontology Learning and Reasoning – Dealing with Uncertainty and Inconsistency.............. 45
Peter Haase, Johanna Völker

Controlling Ontology Extension by Uncertain Concepts through Cognitive Entropy 56
Joaquín Borrego-Díaz, Antonia Chávez-González

The Fuzzy Description Logic f-SHIN ... 67
Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, Jeff Pan, Ian Horrocks

A Generic Framework for Description Logics with Uncertainty .. 77
Volker Haarsler, Hsueh-Ieng Pai, Nematollaah Shiri

Stratified Probabilistic Description Logic Programs... 87
Thomas Lukasiewicz

Position Papers

Modeling Degrees of Conceptual Overlap in Semantic Web Ontologies 98
Markus Holi, Eero Hyvönen

Modeling the Non-Expected Choice: A Weighted Utility Logit ... 100
Pia Koskenoja

Ontology Based Analysis of Experimental Data ... 102
Andrea Splendiani

Paraconsistent Reasoning for the Semantic Web .. 104
S. Schaffert, F. Bry, P. Besnard, H. Decker, S. Decker, C. Enguix, A. Herzig

Representing Probabilistic Relations in RDF .. 106
Yoshio Fukushige

Statistical Reasoning – A Foundation for Semantic Web Reasoning.................................. 108
Shashi Kant, Evangelos Mamas

!

1

 !

!

!

2

3

4

5

6

 !

7

8

9

10

11

A Fuzzy Semantics for Semantic Web Languages

Mauro Mazzieri1 and Aldo Franco Dragoni2

1 mauro.mazzieri@gmail.com
2 Università Politecnica delle Marche

Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni (DEIT)
a.f.dragoni@univpm.it

Abstract. Although the model-theoretic semantics of the languages
used in the Semantic Web are crisps, the need arise to extend them
to represent fuzzy data, in the same way fuzzy logic extend first-order-
logic. We will define a fuzzy counterpart of the RDF Model Theory for
RDF (section 2) and RDF Schema (section 3). Last, we show how to
implement the extended semantics in inference rules (section 4).

Keywords: Fuzzy Logic, Knowledge Representation, Semantic Web, RDF,
RDF Schema.

1 Knowledge representation on the web

The Semantic Web is an extension of the current web in which information
is given well-defined meaning[1] by the use of knowledge representation (KR)
languages.

The KR languages used (RDF, RDF Schema and OWL) have the character-
istics that make them useful on the web[2]:

– the elements of the domain are represented by URI;
– there is no global coherence requirements, as local sources can make asser-

tions independently without affecting each other’s expressiveness.

The languages have the ability to describe, albeit not formally, much more
than their semantics can express. Their model theory captures only a formal no-
tion of meaning, captured by inference rules; the exact ‘meaning’ of a statement
can depend on many factors, not all accessible to machine processing[3]. This
feature can be useful to represent information from fields that require knowl-
edge representation paradigms other than the FOL-like RDF Model Theory or
the expressive Description Logic used by OWL. Amongst those paradigms there
is fuzzy logic, to represent vague or ambiguous knowledge.

2 Fuzzy RDF

RDF has its own model-theoretic semantics, similar to that of first-order logic.
To represent fuzzy data, we will define a syntactic and semantic extension of
RDF, similar to the extension from first-order logic to fuzzy logic.

12

Even if fuzzy data can be simply seen as a juxtaposition of a triple and a
number, the model-theoretic approach has well-known theoretical advantages.

We will try to be as plain as possible. Starting from RDF Syntax and RDF
Model Theory, we will make as few changes as possible. In the rest of the paper,
for the sake of brevity only the changes from RDF Semantics[3] are shown.

2.1 Syntax

The RDF syntax must be extended to add to the triple 〈subject, predicate,
object〉 a value. Such a value can be taken as a real number in the interval [0,
1], but every bounded real interval will do.

This is not an extension from a 3-elements tuple to a 4-elements tuple as it
may seem at a first glance. The added element has a syntactic nature different
from the others: it is not an element of the domain of the discourse, but a
property related to the formalism used by the language to represent uncertainty
and vagueness.

The simple concrete syntax we define is as an extension of the EBNF of
N-Triples as given in [4]. Our extension is given in table 1.

N-Triples is a line-based, plain text format for encoding an RDF Graph, used
for expressing RDF test cases. A statement has the form s p o., where s, p and
o are respectively the subject, the predicate and the object of the statement. Our
extended syntax add an optional prefix n: to a statement in N-triple notation,
where n is a decimal number representing the fuzzy truth-value of the triple.
The use of decimal numbers instead of real numbers is only a limitation of the
syntax and does not undermine the discussion.

The term triple, used in the EBNF for N-Triple, is replaced with the more
generic term statement. Triple and statement are often used in semantic web lit-
erature as a synonym, but we prefer to use the latter to avoid confusion between a
plain RDF statement (made actually of three parts) and a fuzzy RDF statement
(that, although is still a triple semantically, is made up of four elements).

The fuzzy value is defined as optional. This way, the syntax is backward-
compatible; the intended semantics is that a statement with the form s p o. is
equivalent to the statement 1: s p o.. With such a (syntactic only) default, we
could take an inference engine implementing fuzzy RDF, let it parse plain RDF
statements, and get the same results of a conventional RDF inference engine.
Furthermore, as it would be clear in the description of fuzzy RDF inference rules
(section 4), even the complexity of the computation would be of the same order.

We will not give an abstract syntax, nor a RDF/XML based syntax, as
they would not be useful. It can be shown that all “physical“ data (i.e., data
transmitted between host or processes) can be encoded using plain RDF reified
statements. The extended syntax will be used only in the paper to write down
the examples.

13

fuzzyNtripleDoc ::= line*
line ::= ws* (comment | statement)? eoln
comment ::= ‘#’ (character − (cr | lf))*
statement ::= (value ws+)? subject ws+ predicate ws+ object ws* ‘.’ ws*
value ::= 1 | 0.[0–9]+
subject ::= uriref | nodeID
predicate ::= uriref
object ::= uriref | nodeID | literal
uriref ::= ‘<’ absoluteURI ‘>’
nodeID ::= ‘_:’ name
literal ::= langString | datatypeString
langString ::= ‘"’ string ‘"’ (‘@’ language)?
datatypeString ::= ‘"’ string ‘"’ ‘^^’ uriref
language ::= [a–z]+ (‘-’ [a–z0–9]+)*

encoding a language tag.
ws ::= space | tab
eoln ::= cr | lf | cr lf
space ::= #x20 /* US-ASCII space - decimal 32 */
cr ::= #xD /* US-ASCII carriage return - decimal 13 */
lf ::= #xA /* US-ASCII line feed - decimal 10 */
tab ::= #x9 /* US-ASCII horizontal tab - decimal 9 */
string ::= character* (with escapes as defined in section Strings of [4])
name ::= [A-Za-z][A–Za–z0–9]*
absoluteURI ::= character+ (with escapes as defined in section URI References

of [4])
character ::= [#x20–#x7E] /* US-ASCII space to decimal 126 */

Table 1. EBNF for Fuzzy N-Triples

2.2 Simple interpretation

The RDF Model Theory[3] is based on the concept of extension. An interpre-
tation satisfies a triple s p o. if the couple formed by the interpretation of
the subject and the interpretation of the object belongs to the extension of the
interpretation of the property.

In this fuzzy counterpart, a couple 〈subject, object〉 has a membership de-
gree to the extension of the predicate, given by the number prepended to the
statement. The extension is not an ordinary set of couples anymore, but a fuzzy
set of couples. In other words, a fuzzy RDF interpretation satisfies a statement
n: s p o. if the membership degree of the couple, formed by the interpreta-
tion of the subject and the interpretation of the object, to the extension of the
interpretation of the predicate, is greater or equal than n.

We have chosen not to make the mapping between vocabulary items and
domain fuzzy. Instead, the membership of a resource to the domain is fuzzy.
This is a step which poses some theoretical problems, in particular when we
have to deal with properties in simple interpretations. In RDF interpretation,
the property domain IP is a subset of the resource domain IR, so in fuzzy RDF

14

interpretations would be enough to make IP a fuzzy subset of IR; in simple
interpretations, instead, there is no formal relation between IP and IR, so when
the mapping IS from URI references to (IR ∪ IP) becomes fuzzy we need a
further device. The chosen solution is to define a domain IDP for properties,
so that IP is a fuzzy subset of IDP , and to modify the definition of IS to a
mapping URI references ∈ V → (IR∪IDP). RDF interpretations does not need
IDP , as IP can be shown to be a fuzzy subset of IR.

Definition of a simple interpretation A simple fuzzy interpretation I of a vocab-
ulary V is defined by:

1. A non empty set IR of resources, called the domain or universe of I
2. A non empty set IDP , called the property domain of I
3. A fuzzy subset IP of IDP , called the set of properties of I
4. A fuzzy mapping IEXT : IP → 2IR×IR, i.e. the fuzzy set of pairs 〈x, y〉

with x, y ∈ IR.
5. A mapping IS from URI references ∈ V → (IR ∪ IDP)
6. A mapping IL from typed literals ∈ V → IR
7. A distinguished subset LV ⊆ IR, called the set of literal values, which con-

tains all the plain literals of V

The belonging of an element to the properties domain is strictly related to
the use of such element as a property in a statement. Therefore, we have defined
a membership degree to the property domain, intuitively related to the truth
value of the statements in which the resource is used as a property.

2.3 Denotations for ground graphs

The next step is to define the semantic conditions an interpretation must satisfy
in order to be a model for a graph. We state the semantic conditions that relate
the membership degree of a couple 〈subject, object〉 to an extension and the
truth of a fuzzy statement.

We will use the abbreviated Zadeh’s notation A(x) = n, instead of µA(x) = n,
to state that the membership degree of the element x to the set A is equal to
n [5].

Semantic conditions for ground graphs

– if E is a plain literal aaa ∈ V , then I(E) = aaa
– if E is a plain literal aaa@ttt ∈ V , then I(E) = 〈aaa, ttt〉
– if E is a typed literal ∈ V , then I(E) = IL(E)
– if E is a URI reference ∈ V , then I(E) = IS(E)
– if E is a ground triple n: s p o., then I(E) = true if s, p and o ∈ V ,

IP (I(p)) ≥ n and IEXT (I(p))(〈I(s), I(o)〉) ≥ n, otherwise I(E) = false.
– if E is a ground RDF graph, than I(E) = false if I(E′) = false for some

triple E′ ∈ E, otherwise I(E) = true

15

Only the condition of truth and falsity of a ground statement in the interpre-
tation is affected. The given formulation of the condition has as a consequence
that a graph where the same statement appears more than once, with differ-
ent membership degrees, is equivalent to a graph where the statement appears
only once, with a membership degree equal to the maximum of the membership
degrees.

Note that whether a statement is a model for a graph or not is not a fuzzy
concept; it is either true or false. However, it could be interesting to compute
the minimum and maximum membership degree to an extensions a couple must
have in an interpretation to be a model of a given graph. This minimum degree
has a role similar to the degree of truth of a statement in a knowledge base.

2.4 Simple entailment

The definition of simple interpretation is not affected. A set S of RDF graphs
(simply) entails a graph E if every interpretation which satisfies every member
of S also satisfies E.

Given a graph G and a triple 〈s, p, o〉, it could be interesting to compute
the minimum and maximum value of n such that G entails n: s p o.. Those
bounds must be taken in account when we compute the deductive closure of the
graph, as it is not unique.

Section 2 of RDF Semantics [3] shows many lemmas that apply to simple
interpretations. All of them retain their validity within fuzzy RDF Model Theory,
making some adjustments in the proof of some of them. We will show these.

The Empty Graph Lemma can be shown using the same proof. The definition
of an empty graph is the same as in plain RDF: an empty graph is a graph with no
statements at all. It is important to note that an empty graph can not be defined
as a graph with no not-zero-valued statements. Statements such as 0: s p o.,
although pretty useless, cannot be ignored, as the semantic requirement that s,
p and o must belong to the graph’s vocabulary still applies.

Subgraph Lemma, Instance Lemma and Merging Lemma retain both their
validity and their proofs with the new semantics.

Interpolation Lemma, Anonymity Lemma, Monotonicity Lemma and Com-
pactness Lemma make use in their proof of a way of constructing an interpre-
tation of a graph using lexical items in the graph itself, the so called Herbrand
interpretation [6]. To prove the lemmas, we need to construct a similar interpre-
tation for a fuzzy graph.

The (simple) Herbrand fuzzy interpretation of G, written Herb(G), can be
defined as follows.

– LVHerb(G) is the set of all plain literals in G;
– IRHerb(G) is the set of all names and blank nodes which occur in subject or

object position of statements in G;
– IDPHerb(G) is the set of URI references which occur in the property position

of statements in G;

16

– IPHerb(G)(p) is the maximum of n for all statements in which p occur in
property position;

– IEXTHerb(G)(〈s, o〉) is the maximum n for all the statements n: s p o. in
G

– ISHerb(G) and ILHerb(G) are both identity mappings on the appropriate
parts of the vocabulary of G.

Using this definition of Herbrand interpretation instead of that in Appendix
A of [3], the proofs for cited lemmas still apply.

2.5 RDF Interpretation

RDF Semantic Conditions

– IP (x) = IEXT (I(rdf : type))(〈x, I(rdf : Property))
– If ”xxx”∧∧rdf : XMLLiteral ∈ V and xxx is a well-typed XML literal string,

then
• IL(”xxx” ∧ ∧rdf : XMLLiteral) is the XML value of xxx;
• IL(”xxx” ∧ ∧rdf : XMLLiteral) ∈ LV ;
• IEXT (I(rdf : type))

(〈IL(”xxx” ∧ ∧rdf : XMLLiteral),
I(rdf : XMLLiteral)〉) = 1

– If ”xxx”∧∧rdf : XMLLiteral ∈ V and xxx is an ill-typed XML literal string,
then
• IL(”xxx” ∧ ∧rdf : XMLLiteral) /∈ LV ;
• IEXT (I(rdf : type))

(〈IL(”xxx” ∧ ∧rdf : XMLLiteral),
I(rdf : XMLLiteral)〉) = 0

The first RDF semantic condition has the consequence that IP must be a
subset of IR. Given such a fact, there is no more need of IDP , as it was for
simple interpretation. IP can be directly defined as a fuzzy subset of IR.

The second and third conditions equal to see the well-formedness of an XML
Literal as crisp truth-valued. We could conceive an external machinery that can
be considered completely trustworthy as it classify an XML literal as well-formed
or not.

RDF axiomatic triples By definition, we give axiomatic triples a unit truth
value. Given the (syntactic) convention that a triple s p o. is equivalent to the
fuzzy statement 1: s p o., we can take the table of axiomatic triples of RDF in
section 3.1 of [3] and copy it as-is as the table of axiomatic statements of fuzzy
RDF.

17

3 Fuzzy RDF Schema

The path from RDF Schema to Fuzzy RDF Schema follows the same guidelines
of the previous section.

The RDFS semantics is conveniently stated in terms of a new semantic con-
struct: the class [3]. A class is a resource with a class extension, ICEXT , which
represents a set of things in the universe which all have that class as the object
of their rdf:type property. Thus, the definition of a class roots in the definition
of extension.

In fuzzy RDF, extensions are fuzzy set of couples; in fuzzy RDFS, class
extensions are fuzzy sets of domain’s elements.

3.1 RDFS Interpretation

A RDFS interpretation define the domains for resources (IR), literals (IL) and
literal values (LV) in terms of classes. In fuzzy RDFS they are fuzzy subdomains
of IR.

We will give RDFS semantic conditions and axiomatic triples, then we will
try to explain the more problematic definitions: domains/ranges (section 3.2)
and subproperties/subclasses (section 3.3).

RDFS semantic conditions

– ICEXT (y)(x) = IEXT (I(rdf : type))(〈x, y〉)

• IC = ICEXT (I(rdfs : Class))
• IR = ICEXT (I(rdfs : Resource))
• IL = ICEXT (I(rdfs : Literal))

– ICEXT (y)(u) ≥ min(IEXT (I(rdfs : domain))(〈x, y〉), IEXT (x)(〈u, v〉))
– ICEXT (y)(u) ≥ min(IEXT (I(rdfs : range))(〈x, y〉), IEXT (x)(〈u, v〉))
– IEXT (I(rdfs : subPropertyOf)) is transitive and reflexive on IP
– If IEXT (rdfs : subPropertyOf)(〈x, y〉) = n, then IP (x) ≥ n, IP (y) ≥ n,

min〈a,b〉{1− IEXT (x)(〈a, b〉) + IEXT (y)(〈a, b〉)} ≥ n
– IEXT (I(rdfs : subClassOf))(〈x, I(rdfs : Resource)〉) = IC(x)
– If IEXT (rdfs : subClassOf)(〈x, y〉) = n, then IC(x) ≥ n, IC(y) ≥ n,

mina{1− IC(x)(a) + IC(y)(a)} ≥ n.
– IEXT (I(rdfs:subClassOf)) is transitive and reflexive on IC
– IEXT (I(rdfs : subPropertyOf))(〈x, I(rdfs : member)〉) =

ICEXT (I(rdfs : ContainerMembershipProperty))(x)
– ICEXT (I(rdfs : Datatype))(x) =

IEXT (I(rdfs : subClassOf))(〈x, I(rdfs : Literal)〉)

RDFS axiomatic triples As for RDF axiomatic triples, fuzzy RDFS axioms are
the same of plain RDFS, from section 4.2 of RDF Semantics [3].

18

3.2 Domains and ranges

The semantic condition on domains looks quite complicated. To explain it, we
will proceed by grades.

In plain RDF Schema, if 〈x, y〉 ∈ IEXT (I(rdfs : domain)) and 〈u, v〉 ∈
IEXT (x) then u ∈ ICEXT (y).

In fuzzy set theory, let R be a fuzzy relation on X × Y . Then the domain
is defined as dom(R)(x) = supyR(x, y) [7], i.e. the least upper bound of R(x, y)
for all y.

In fuzzy RDFS, we have to deal both with a fuzzy notion of domain, and
with a fuzzy assignment of a domain to a property.

Let consider a resource u and a class y. For each property x, we take the mini-
mum between IEXT (I(rdfs : domain))(〈x, y〉) and IEXT (x)(〈u, v〉). Then, fol-
lowing the original RDFS condition, ICEXT (y)(u) must be greater or equal
than this value.

The previous condition must hold for every property x, so it’s equivalent to
state that must be taken the maximum value.

The conditions for ranges are analogous.

3.3 Subproperties and subclasses

Subproperties and subclasses are fully analogous concepts. The set inclusion is
between extensions for the former, between class extensions of the latter.

To define the semantics of subClassOf and subPropertyOf, we need a rela-
tion of set inclusion between fuzzy sets that takes into account also the degree
of the relation of inclusion itself. This relation must be transitive and reflexive.

Zadeh’s definition of fuzzy subset [8]3 (A ⊆ B ⇐⇒ ∀x ∈ X A(x) ≤ B(x))
is transitive and reflexive, but is not a fuzzy relation: either the set A is a subset
of B, or not. What we need is instead a weaker fuzzy subset relation; a relation
that reduces to the Zadeh’s one when the subclass/subproperty relation has a
unit truth value. It must also maintain the reflexivity and transitivity properties.

Dubois and Prade [7] define weak inclusion !α as

A !α B ⇐⇒ x ∈ (A ∪B)α ∀x ∈ X ,

where α is a parameter and (·)α is the α-cut4. This relation is transitive only for
α > 1

2 .
Other definitions of weak inclusion make use of inclusion grades. An inclusion

grade I(A,B) is a scalar measure of the inclusion of the set A in the set B.
In general, A ⊆α B iff I(A,B) ≥ α, where ⊆α denote a weak inclusion with
inclusion grade α.

We have chosen to use the inclusion grade defined as [7]:

3 Again, we use the abbreviation A(x) for the membership function µA(x).
4 The α-cut Aα of A is the set of all elements with a membership value to A greater

than α, with α ∈ (0, 1] Aα = {x|A(x) ≥ α}

19

I(A,B) = infx∈X(A |− | B)(x)

where inf is the infimum and |− | is the bounded difference5.
When A ⊆ B, I(A,B) = 1 [7].
This inclusion grade could also be written as I(A,B) = infx∈X(1−max(0, A(x)−

B(x))) = infx∈Xmin(1, (1−A + B)).
Furthermore, let’s suppose that there is at least an x such that A(x) > B(x).

Then I(A,B) could be written as infx∈X(1 − A + B). The semantic condition
requires such measure to be greater than or equal to n, where n is the truth
value of the statement. In this case the semantic condition reduces to

infx∈X(1−A + B) ≥ n .

It could be interesting to ask how much this definition differs from the con-
dition for classical fuzzy subsets, A(x) ≤ B(x).

If A ⊆ B, then I(A,B) = 1, so the semantic condition holds for any n ∈ [0, 1].
Let’s call d(x) the difference d(x) = A(x)−B(x), so that 1−A+B = 1−d. We

suppose that there is at least an x such that A(x) > B(x), so d(x) has at least a
positive value. The semantic condition could then be written infx∈X(1−d(x)) ≥
n. The maximum positive value of the difference d equal to 1− n.

As n is the truth value of the statement that asserts the relation of subprop-
erty or subclass, and 1−n represent the lack of truth of the same statement, we
can conclude that the maximum allowable positive difference between A(x) and
B(x) is equal to the lack of truth on the subproperty or subclass relation.

4 Fuzzy RDF entailment rules

RDF Model Theory’s entailment rules [3] are all of the same form: add a state-
ment to a graph when it contains triples conforming to a pattern. Each rule
has only one or two antecedent statements and derive only one new inferred
statement; either P / R or P,Q / R.

Given the way fuzzy RDF semantics is defined, the corresponding inference
rules for fuzzy RDF are analogous; only the fuzzy truth values of inferred state-
ments must be computed. The simplest possible choice that respect the semantics
is:

– With rules as P / Q, having only one antecedent, the truth value of the
consequent Q is taken to be the same of the antecedent P .

– With rules as P,Q / R, the truth value of R is the minimum between the
truth values of P and Q.

The inference rules for RDF/RDFS are shown in table 2. They were derived
from the rules used by the Sesame[10] forward-chaining inferencer.

5 ∀x ∈ X, (A |− | B)(x) = max(0, A(x)−B(x)) [9]

20

Sesame is a generic architecture for storing and querying RDF and RDF
Schema. It makes use of a forward-chaining inferencer to compute and store the
closure of its knowledge base whenever a transaction adds data to the reposi-
tory[11]. Sesame applies RDF-MT inference rules in a optimized way, making
use of the dependencies between them to eliminate most redundant inferencing
steps.

To obtain a fuzzy RDF storage and inference tool it is only a matter of
modify Sesame RDF-MT inferencer, making it compute the correct truth values
for inferred statements, and to extend the underlying storage to make room for
a truth value (i.e., a number) for each statement.

This shows how a simple proof-of-concept fuzzy RDF inferencer is easy to
implement. The starting point is the code base of an inference engine that im-
plements the RDF model theory.

It can be shown that an inference engine implementing such rules is correct:
all its rules are valid, in the sense that a graph entails any larger graph that is
obtained by applying the rules to the original graph. There is no formal proof
that it is also complete, but there is not such a proof for plain RDF Model
Theory inference rules either.

References

1. Hendler, J., Lassila, O., Berners-Lee, T.: The semantic web. Scientific American
(2001) 28–37

2. Berners-Lee, T.: What the semantic web can represent. W3C design issues, World
Wide Web Consortium (September 1998)

3. Hayes, P.: RDF Semantics. W3C recommendation, World Wide Web Consortium
(10 February 2004)

4. Grant, J., Beckett, D.: RDF test cases. W3C recommendation, World Wide Web
Consortium (2004)
http://www.w3.org/TR/rdf-testcases/.

5. Zadeh, L.A.: A fuzzy set theoretic interpretation of linguistic hedges. Journal of
Cybernetics 2 (1972) 4–34

6. Goldfarb, W.D., ed.: Logical Writings of Jacques Herbrand. Harvard University
Press, Cambridge (1971)

7. Dubuois, D., Prade, H.: Fuzzy sets and Systems. Academic Press, New York, NJ
(1980)

8. Zadeh, L.A.: Fuzzy sets. Information and Control (1965) 338–353
9. Zadeh, L.A.: Calculus of Fuzzy Restrictions. In: Fuzzy Sets and Their Applications

to Cognitive and Decision Processes. Academic Press, New York (1975) 1–39
10. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture

for storing and quering RDF and RDF Schema. In Horrocks, I., Handler, J., eds.:
Proceedings of the first International Semantic Web Conference (ISWC 2002),
Sardinia, Italy (2002) 54–68

11. Broekstra, J., Kampman, A.: Inferencing and truth maintenance in RDF Schema:
exploring a naive practical approach. In: Workshop on Practical and Scalable
Semantic Systems (PSSS) 2003. Second International Semantic Web Conference
(ISWC), Sanibel Island, Florida, USA (2003)

21

antecedents consequent

1 iii: xxx aaa yyy iii: aaa rdf:type rdf:Property
2.1 iii: xxx aaa yyy kkk: xxx rdf:type zzz

jjj: aaa rdfs:domain zzz where kkk = min(iii, jjj)
2.2 iii: aaa rdfs:domain zzz kkk: xxx rdf:type zzz

jjj: xxx aaa yyy where kkk = min(iii, jjj)
3.1 iii: xxx aaa uuu kkk: uuu rdf:type zzz

jjj: aaa rdfs:range zzz where kkk = min(iii, jjj)
3.2 iii: aaa rdfs:range zzz kkk: uuu rdf:type zzz

jjj: xxx aaa uuu where kkk=min(iii, jjj)
4a iii: xxx aaa yyy jjj: xxx rdf:type rdfs:Resource
4b iii: xxx aaa uuu iii: uuu rdf:type rdfs:Resource
5a.1 iii: aaa rdfs:subPropertyOf bbb kkk: aaa rdfs:subPropertyOf ccc

jjj: bbb rdfs:subPropertyOf ccc where kkk=min(iii, jjj)
5a.2 iii: bbb rdfs:subPropertyOf ccc kkk: aaa rdfs:subPropertyOf ccc

jjj: aaa rdfs:subPropertyOf bbb where kkk=min(iii, jjj)
5b iii: xxx rdf:type rdf:Property iii: xxx rdfs:subPropertyOf xxx

reflexivity of rdfs:subPropertyOf
6.1 iii: xxx aaa yyy kkk: xxx bbb yyy

jjj: aaa rdfs:subPropertyOf bbb where kkk=min(iii, jjj)
6.2 iii: aaa rdfs:subPropertyOf bbb kkk: xxx bbb yyy

jjj: xxx aaa yyy where kkk=min(iii, jjj)
7a iii: xxx rdf:type rdfs:Class iii: xxx rdfs:subClassOf rdfs:Resource
7b iii: xxx rdf:type rdfs:Class iii: xxx rdfs:subClassOf xxx

reflexivity of rdfs:subClassOf
8.1 iii: xxx rdfs:subClassOf yyy kkk: xxx rdfs:subClassOf zzz

jjj: yyy rdfs:subClassOf zzz where kkk=min(iii, jjj)
8.2 iii: yyy rdfs:subClassOf zzz kkk: xxx rdfs:subClassOf zzz

jjj: xxx rdfs:subClassOf yyy where kkk=min(iii, jjj)
9.1 iii: xxx rdfs:subClassOf yyy kkk: aaa rdf:type yyy

jjj: aaa rdf:type xxx where kkk=min(iii, jjj)
9.2 iii: aaa rdf:type xxx kkk: aaa rdf:type yyy

jjj: xxx rdfs:subClassOf yyy where kkk=min(iii, jjj)
10 iii: xxx rdf:type iii: xxx rdfs:subPropertyOf rdfs:member

rdfs:ContainerMembershipProperty
11 iii: xxx rdf:type rdfs:Datatype jjj: xxx rdfs:subClassOf rdfs:Literal
X1 iii: xxx rdf:_* yyy jjj: rdf:_* rdf:type rdfs:ContainerMembershipProperty

This is an extra rule for list membership
properties (_1, _2, _3, ...). The RDF MT
does not specify a production for this.

Table 2. Fuzzy RDF inference rules

22

PR-OWL: A Bayesian Ontology Language

for the Semantic Web

Paulo Cesar G. da Costa, Kathryn B. Laskey

School of Information Technology and Engineering,

George Mason University

4400 University Drive

Fairfax, VA 22030-4444 USA

{pcosta, klaskey}@gmu.edu

Kenneth J. Laskey#
MITRE Corporation, M/S H305

7515 Colshire Drive

McLean, VA 22102-7508 USA

klaskey@mitre.org

·The author's affiliation with The MITRE Corporation is provided for identification purposes

only, and is not intended to convey or imply MITRE's concurrence with, or support for, the

positions, opinions or viewpoints expressed by the author.

Abstract. This paper addresses a major weakness of current technologies for

the Semantic Web, namely the lack of a principled means to represent and rea-

son about uncertainty. This not only hinders the realization of the original vi-

sion for the Semantic Web, but also creates a barrier to the development of new,

powerful features for general knowledge applications that require proper treat-

ment of uncertain phenomena. We propose to extend OWL, the ontology lan-

guage recommended by the World Wide Web Consortium (W3C), to provide

the ability to express probabilistic knowledge. The new language, PR-OWL,

will allow legacy ontologies to interoperate with newly developed probabilistic

ontologies. PR-OWL will move beyond the current limitations of deterministic

classical logic to a full first-order probabilistic logic. By providing a principled

means of modeling uncertainty in ontologies, PR-OWL will serve as a support-

ing tool for many applications that can benefit from probabilistic inference

within an ontology language, thus representing an important step toward the

W3C’s vision for the Semantic Web.

1 A Deterministic View of a Probabilistic World

Uncertainty is ubiquitous. If the Semantic Web vision [1] is to be realized, a sound

and principled means of representing and reasoning with uncertainty will be required.

Existing Semantic Web technologies lack this capability. Our broad objective is to

address this shortcoming by developing a Bayesian framework for probabilistic on-

tologies and plausible reasoning services. As an initial step toward our objective, we

introduce PR-OWL, a probabilistic extension to the Web ontology language OWL.

Although our research is focused in the Semantic Web, we are tackling a problem

that long predates the WWW: the quest for more efficient data exchange. Clearly,

solving that problem requires precise semantics and flexible ways to convey informa-

tion. While the WWW provides a new presentation medium, and technologies such as

XML present new data exchange formats, neither addresses the semantics of data

23

being exchanged. The SW is meant to fill this gap, and the realization of its goals will

require major improvements in technologies for data exchange.

One of the main technical differences between the current World Wide Web and

the Semantic Web is that while the first relies on syntactic-only protocols such as

HTTP and HTML, the latter adds meta-data annotations as a means to convey shared,

precisely defined terms. That is, semantic awareness is exploited to improve interop-

erability among Web resources. Semantic interoperability requires shared repositories

of precisely defined concepts. Such repositories are called ontologies.

One can find many different definitions for the concept of ontology applied to in-

formation systems, each emphasizing a specific aspect its author judged most impor-

tant. Our focus is on ontology’s role as a structured form of knowledge representation.

Thus, we define an ontology as an explicit, formal representation of knowledge about

a domain of application. This includes: types of entities that exist in the domain,

properties of those entities, relationships among entities, and processes and events that

happen with those entities. In this definition, the term entity refers to any concept

(real or fictitious, concrete or abstract) that can be described and reasoned about

within the domain of application. Ontologies are used for the purpose of comprehen-

sively describing knowledge about a domain in a structured and sharable way, ideally

in a format that can be read and processed by a computer.

Semantically aware schemes must be able to represent and appropriately process

semantic differences between syntactically identical terms (e.g., “Grape” as a fruit

versus John Grape the person). This is not a trivial task. Semantic interoperability

requires shared sources of precisely defined concepts, which is exactly where ontolo-

gies play a key role. Yet, a traditional ontology can at best list multiple possible

senses for a word such as “Grape,” with no ability to grade their relative plausibility

in a given context. This is inadequate for an open world environment where incom-

plete information is the rule and plausible reasoning is required.

 Current generation Semantic Web technology is based on classical logic, and is

lacks adequate support for plausible reasoning. For example, OWL, a W3C Recom-

mendation [2], has no built-in support for probabilistic information and reasoning.

This is understandable, given that OWL is rooted in web language predecessors (i.e.

XML, RDF) and traditional knowledge representation formalisms (e.g.. Description

Logics [3]). This historical background somewhat explains the lack of support for

uncertainty in OWL. Nevertheless, it is a serious limitation for a language intended

for environments where one cannot simply ignore incomplete information.

A similar historical progression occurred in Artificial Intelligence (AI). From its

inception, AI has struggled with how to cope with incomplete information. Although

probability theory was initially neglected due to tractability concerns, graphical prob-

ability languages changed things dramatically [4]. Probabilistic languages have

evolved from propositional to full first-order expressivity (e.g., [5]), and have become

the technology of choice for reasoning under uncertainty in an open world [6].

Clearly, the Semantic Web will pose similar uncertainty-related issues as those faced

by AI. Thus, just as AI has moved from a deterministic paradigm to embrace prob-

ability, a similar path appears promising for ontology engineering.

This path is not yet being followed. The lack of support for representing and rea-

soning with uncertain, incomplete information seriously limits the ability of current

Semantic Web technologies to meet the requirements of the Semantic Web. Our work

24

is an initial step toward changing this situation. We aim to establish a framework that

enables full support for uncertainty in the field of ontology engineering and, as a

consequence, for the Semantic Web. In order to achieve this goal, we choose to focus

on extending OWL so it can represent uncertainty in a principled way.

2 Related Research

One of the main reasons why Semantic Web research is still focused on deterministic

approaches has been the limited expressivity of traditional probabilistic languages.

There is a current line of research focused on extending OWL so it can represent

probabilistic information contained in a Bayesian Network (e.g. [7], [8]). The ap-

proach involves augmenting OWL semantics to allow probabilistic information to be

represented via additional markups. The result would be a probabilistic annotated

ontology that could then be translated to a Bayesian network (BN). Such a translation

would be based on a set of translation rules that would rely on the probabilistic infor-

mation attached to individual concepts and properties within the annotated ontology.

BNs provide an elegant mathematical structure for modeling complex relationships

among hypotheses while keeping a relatively simple visualization of these relation-

ships. Yet, the limited attribute-value representation of BNs makes them unsuitable

for problems requiring greater expressive power.

Another popular option for representing uncertainty in OWL has been to focus on

OWL-DL, a decidable subset of OWL that is based on Description Logics [3]. De-

scription Logics are a family of knowledge representation formalisms that represent

the knowledge of an application domain (the “world”) by first defining the relevant

concepts of the domain (its terminology), and then using these concepts to specify

properties of objects and individuals occurring in the domain (the world description).

Description logics are highly effective and efficient for the classification and sub-

sumption problems they were designed to address. However, their ability to represent

and reason about other commonly occurring kinds of knowledge is limited. One re-

strictive aspect of DL languages is their limited ability to represent constraints on the

instances that can participate in a relationship. As an example, suppose we want to

express that for carnivore to be a threat to another carnivore in a specific type of situa-

tion it is mandatory that the two individuals of class Carnivore involved in the situa-

tion are not the same. Making sure the two carnivores are different in a specific situa-

tion is only possible in DL if we actually create/specify the tangible individuals in-

volved in that situation. Indeed, stating that two “fillers” (i.e. the actual individuals of

class Carnivore that will “fill the spaces” of concept carnivore in our statement) are

not equal without specifying their respective values would require constructs such as

negation and equality role-value-maps, which cannot be expressed in description

logic. While equality role-value-maps provide useful means to specify structural

properties of concepts, their inclusion makes the logic undecidable [9].

Although the above approaches are promising where applicable, a definitive solu-

tion for the Semantic Web requires a general-purpose formalism that gives ontology

designers a range of options to balance tractability against expressiveness.

25

Pool and Aiken [10] developed an OWL-based interface for the relational probabil-

istic toolset Quiddity*Suite, developed by IET, Inc. Their constructs provide a very

expressive method for representing uncertainty in OWL ontologies. Their work is

similar in spirit to ours, but is specialized to the Quiddity*Suite toolset. We focus on

the more general problem of enabling probabilistic ontologies for the SW. We employ

Multi-Entity Bayesian Networks (MEBN) as our underlying logical basis, thus pro-

viding full first-order expressiveness.

3 Multi-Entity Bayesian Networks

The acknowledged standard for logically coherent reasoning under uncertainty is

Bayesian probability theory. Bayesian theory provides a principled representation of

uncertainty, a logic for combining prior knowledge with observations, and a learning

theory for refining the ontology as evidence accrues. The logical basis for PR-OWL is

MEBN logic [5], which combines Bayesian probability theory with classical First

Order Logic. Probabilistic knowledge is expressed as a set of MEBN fragments

(MFrags) organized into MEBN Theories. An MFrag is a knowledge structure that

represents probabilistic knowledge about a collection of related hypotheses. Hypothe-

ses in an MFrag may be context (must be satisfied for the probability definitions to

apply), input (probabilities are defined in other MFrags), or resident (probabilities

defined in the MFrag itself). An MFrag can be instantiated to create as many instances

of the hypotheses as needed (e.g., an instance of the “Disease” hypothesis for each

patient at a clinic). Instances of different MFrags may be combined to form complex

probability models for specific situations. A MEBN theory is a collection of MFrags

that satisfies consistency constraints ensuring the existence of a unique joint probabil-

ity distribution over instances of the hypotheses in its MFrags.

MEBN inference begins when a query is posed to assess the degree of belief in a

target random variable given a set of evidence random variables. We start with a

generative MTheory, add a set of finding MFrags representing problem-specific in-

formation, and specify the target nodes for our query. The first step in MEBN infer-

ence is to construct a situation-specific Bayesian network (SSBN), which is a Baye-

sian network constructed by creating and combining instances of the MFrags in the

generative MTheory. When each MFrag is instantiated, instances of its random vari-

ables are created to represent known background information, observed evidence, and

queries of interest to the decision maker. If there are any random variables with unde-

fined distributions, then the algorithm proceeds by instantiating their respective home

MFrags. The process of retrieving and instantiating MFrags continues until there are

no remaining random variables having either undefined distributions or unknown

values. A SSBN may contain any number of instances of each MFrag, depending on

the number of entities and their interrelationships. Next, a standard Bayesian network

inference algorithm is applied. Finally, the answer to the query is obtained by in-

specting the posterior probabilities of the target nodes.

MEBN logic overcomes the limitations of the attribute-value representation of

standard BNs. To understand this limitation, consider a relational database in which

some entries are uncertain. A BN can represent only probabilities for a single table,

26

and treats the rows of the table independently of each other. For example, in a medi-

cal system, the “Patient” table might include information such as age, smoking his-

tory, family history, and whether the patient has emphysema. A BN might represent

the probability of emphysema as a function of smoking history, age, and family his-

tory. If a patient’s family history were unknown, the BN could estimate the probabil-

ity of emphysema using probabilities for the family history. However, a BN cannot

represent relational information such as the increase in the probability of emphysema

for all siblings upon learning that one of their parents had emphysema. To incorporate

this kind of knowledge in a coherent manner, we need to combine relational knowl-

edge (e.g., siblings have the same family history) with attribute-value knowledge

(e.g., family history of emphysema increases the likelihood of emphysema).

To draw generalizations about individuals related in various ways, we need first-

order expressive power. Description logics are attractive because they provide limited

first-order expressivity, yet certain reasoning problems such as classification and

subsumption are decidable. Many researchers have worked to identify decidable

classes of problems for which efficient probabilistic algorithms exist (e.g., Naïve

Bayes classification, in which features are modeled as conditionally independent

given an object’s class). The ontology language P-SHOQ(D) [11], based on descrip-

tion logics, falls into this class.

We have chosen to base PR-OWL on MEBN logic because of its expressiveness:

MEBN can express a probability distribution over models of any finitely axiomatiz-

able first-order theory. As a consequence, there are no guarantees that exact reasoning

with a PR-OWL ontology will be efficient or even decidable. On the other hand, a

future objective is to identify restricted sub-languages of PR-OWL specialized to

classes of problems for which efficient exact or approximate reasoning algorithms

exist. It is our view that a general-purpose language for the Semantic Web should be

as expressive as possible, while providing a means for ontology engineers to stay

within a tractable subset of the language when warranted by the application.

4 Probabilistic Ontologies

Before presenting our probabilistic ontology language, we begin by defining a

probabilistic ontology. Intuitively, an ontology that has probabilities attached to some

of its elements would qualify for this label, but such a limited definition is inadequate

for our purposes. Merely adding probabilities to concepts does not guarantee interop-

erability with other ontologies that also carry probabilities. More is needed than syn-

tax for including probabilities if we are to justify a new category of ontologies.

A probabilistic ontology is an explicit, formal knowledge representation that ex-

presses knowledge about a domain of application. This includes: (i) Types of entities

that exist in the domain; (ii) Properties of those entities; (iii) Relationships among

entities; (iv) Processes and events that happen with those entities; (v) Statistical regu-

larities that characterize the domain; (vi) Inconclusive, ambiguous, incomplete, unre-

liable, and dissonant knowledge related to entities of the domain; and (vii) Uncer-

tainty about all the above forms of knowledge. In this definition, the term entity refers

27

to any concept (real or fictitious, concrete or abstract) that can be described and rea-

soned about within the domain.

Probabilistic Ontologies are used for the purpose of comprehensively describing

knowledge about a domain and the uncertainty regarding that knowledge in a princi-

pled, structured and sharable way, ideally in a format that can be read and processed

by a computer. They also expand the possibilities of standard ontologies by introduc-

ing the requirement of a proper representation of the statistical regularities and the

uncertain evidence about entities in a domain of application.

5 PR-OWL

PR-OWL is an extension that enables OWL ontologies to represent complex Bayesian

probabilistic models in a way that is flexible enough to be used by diverse Bayesian

probabilistic tools based on different probabilistic technologies. That level of flexibil-

ity can only be achieved using the underlying semantics of first-order Bayesian logic,

which is not a part of the standard OWL semantics and abstract syntax. Therefore, it

seems clear that PR-OWL can only be realized via extending the semantics and ab-

stract syntax of OWL. However, in order to make use of those extensions, it is neces-

sary to develop new tools supporting the extended syntax and implied semantics of

each extension. Such an effort would require commitment from diverse developers

and workgroups, which falls outside our present scope.

Therefore, in this initial work our intention is to create an upper ontology to guide

the development of probabilistic ontologies. Daconta et al. define an upper ontology

as a set of integrated ontologies that characterizes a set of basic commonsense knowl-

edge notions [12]. In this preliminary work on PR-OWL as an upper ontology, these

basic commonsense notions are related to representing uncertainty in a principled way

using OWL syntax. If PR-OWL were to become a W3C Recommendation, this col-

lection of notions would be formally incorporated into the OWL language as a set of

constructs that can be employed to build probabilistic ontologies.

The PR-OWL upper ontology for probabilistic systems consists of a set of classes,

subclasses and properties that collectively form a framework for building probabilistic

ontologies. The first step toward building a probabilistic ontology in compliance with

our definition is to import into any OWL editor an OWL file containing the PR-OWL

classes, subclasses, and properties.

From our definition, it is clear that nothing prevents a probabilistic ontology from

being “partially probabilistic”. That is, a knowledge engineer can choose the concepts

he/she wants to include in the “probabilistic part” of the ontology, while writing the

other concepts in standard OWL. In this case, the “probabilistic part” refers to the

concepts written using PR-OWL definitions and that collectively form a MEBN The-

ory. There is no need for all the concepts in a probabilistic ontology to be probabilis-

tic, but at least some have to form a valid MEBN Theory. Of course, only the con-

cepts that are part of the MEBN Theory will be subject to the advantages of the prob-

abilistic ontology over a deterministic one.

The subtlety here is that legacy OWL ontologies can be upgraded to probabilistic

ontologies only with respect to concepts for which the modeler wants to have uncer-

28

tainty represented in a principled manner, make plausible inferences from that uncer-

tain evidence, or to learn its parameters from incoming data via Bayesian learning.

While the first two are direct consequences of using a probabilistic knowledge repre-

sentation, the latter is a specific advantage of the Bayesian paradigm, where learning

falls into the same conceptual framework as knowledge representation.

The ability to perform probabilistic reasoning with incomplete or uncertain infor-

mation conveyed through an ontology is a major advantage of PR-OWL. However, it

should be noted that in some cases solving a probabilistic query might be intractable

or even undecidable. In fact, providing the means to ensure decidability was the rea-

son why the W3C defined three different version of the OWL language. While OWL

Full is more expressive, it enables an ontology to represent knowledge that can lead to

undecidable queries. OWL-DL imposes some restrictions to OWL in order to elimi-

nate these cases. Similarly, restrictions of PR-OWL could be developed that limit

expressivity to avoid undecidable queries or guarantee tractability. Possible restric-

tions to be considered for an eventual PR-OWL Lite include (i) constraining the lan-

guage to classes of problems for which tractable exact or approximate algorithms

exist; (ii) restrict the representation of the conditional probability tables (CPT) to

express a tractable and expressive subset of first-order logic; and/or (iii) to employ a

standard semantic web language syntax to represent the CPTs (e.g. RDF). As an ini-

tial step, we chose to focus on the most expressive version of PR-OWL, which does

not have expressivity restrictions and provides the ability to represent CPTs in multi-

ple formats.

An overview of the general concepts involved in the definition of a MEBN Theory

in PR-OWL is depicted in Figure 1. In this diagram, the ovals represent general

classes; and arrows represent major relationships between classes. A probabilistic

ontology must have at least one individual of class MTheory, which is a label linking

a group of MFrags that collectively form a valid MEBN Theory. In actual PR-OWL

syntax, that link is expressed via the object property hasMFrag (which is the inverse

of object property isMFragIn).

Fig. 1. Overview of a PR-OWL MEBN Theory Concepts

Individuals of class MFrag are comprised of nodes, which can be resident, input, or

context nodes (not shown in the picture). Each individual of class Node is a random

variable and thus has a mutually exclusive and collectively exhaustive set of possible

states. In PR-OWL, the object property hasPossibleValues links each node with its

possible states, which are individuals of class Entity. Finally, random variables (rep-

resented by the class Nodes in PR-OWL) have unconditional or conditional probabil-

29

ity distributions, which are represented by class Probability Distribution and linked to

its respective nodes via the object property hasProbDist.

The scheme in Figure 1 is intended to present just a general view and thus fails to

show many of the intricacies of an actual PR-OWL representation of a MEBN The-

ory. Figure 2 shows an expanded version conveying the main elements in Figure 1,

their subclasses, the secondary elements that are needed for representing a MEBN

Theory and the reified relationships that were necessary for expressing the complex

structure of a Bayesian probabilistic model using OWL syntax.

Reification of relationships in PR-OWL is necessary because of the fact that prop-

erties in OWL are binary relations (i.e. link two individuals or an individual and a

value), while many of the relations in a probabilistic model include more than one

individual (i.e. N-ary relations). The use of reification for representing N-ary relations

on the Semantic Web is covered by a working draft from the W3C’s Semantic Web

Best Practices Working Group [13].

Although the scheme in Figure 2 shows all the elements needed to represent a

complete MEBN Theory, it is clear that any attempt at a complete description would

render the diagram cluttered and incomprehensible. A complete account of the

classes, properties and the code of PR-OWL that define an upper ontology for prob-

abilistic systems is given in [14]. These definitions can be used to represent any

MEBN Theory.

In its current stage, PR-OWL contains only the basic elements needed to represent

any MEBN theory. Such a representation could be used by a Bayesian tool (acting as

a probabilistic ontology reasoner) to perform inferences to answer queries and/or to

learn from newly incoming evidence via Bayesian learning.

Fig. 2. Elements of a PR-OWL Probabilistic Ontology

However, building MFrags and all their elements in a probabilistic ontology is a

manual, error prone, and tedious process. Avoiding errors or inconsistencies requires

30

very deep knowledge of the logic and of the data structure of PR-OWL. Without

considering the future paths to be followed by research on PR-OWL (i.e. whether it

will be kept as an upper ontology or transformed into an actual extension to the OWL

language), the framework discussed here and in greater detail in [14] makes it already

possible to facilitate probabilistic ontology usage and editing by developing plugins to

current OWL editors. Figure 3 illustrates a plugin concept for the OWL Protégé editor

(which is itself a Protégé plugin). The figure illustrates how graphical construction of

an MFrag can be performed in a similar fashion to how a BN is constructed in one of

the many graphical editors for BNs. In this proposed scheme, in order to build an

MFrag a user would select the icon for the type of node he/she wants to create (e.g.

resident, input, context, etc.), connect that node with its parents and children, and

enter its basic characteristics (i.e. name, probability distribution, etc.) either by dou-

ble-clicking on it or via another GUI-related facility. Such a plugin would hide from

users the complex constructs required to convey the many details of a probabilistic

ontology, providing a more intuitive and less error-prone means of constructing and

maintaining probabilistic ontologies.

Fig. 3. Elements of a PR-OWL Probabilistic Ontology

This brief idea of an operational concept barely scratches the surface of the many

possibilities for the technology presented here. Implementing a plugin such as the one

envisioned here is a development task that is a topic for future research. Nonetheless,

31

the PR-OWL upper ontology definitions take an important first step toward making

probabilistic ontologies a reality. By opening the door to wide use of PR-OWL prob-

abilistic ontologies, the present research makes a significant contribution to realizing

the Semantic Web vision.

6 Conclusion

This paper describes a coherent, comprehensive probabilistic framework for the

Semantic Web, that provides a means of representing probabilistic knowledge and

providing web services such as plausible inference and Bayesian learning. The pro-

posed framework is an initial step towards a more comprehensive effort focused on

representing uncertainty in the Semantic Web.

A PR-OWL plugin for current OWL ontology editors is a priority for future efforts.

The process of writing probabilistic ontologies can be greatly improved via automa-

tion of most of the steps in the ontology building, not only for defining MFrags to

represent sets of related hypotheses, but also for consistency checking, reified rela-

tions and other tasks that demand unnecessary awareness of the inner workings of the

present solution. Once implemented, such a plugin has the potential to make probabil-

istic ontologies a natural, powerful tool for the Semantic Web.

Finally, the most important requirement for adoption of a language is the stan-

dardization process. This process goes significantly beyond academic research and

thus falls outside the scope of the present work. Nonetheless, we are confident of its

feasibility, which we believe we have demonstrated in this effort, and of its desirabil-

ity, given its potential to help solve many of the obstacles that stand in the way of

realizing the W3C’s vision for the Semantic Web.

References

1. Berners-Lee, T. and M. Fischetti, Weaving the Web: the original design and ultimate

destiny of the World Wide Web by its inventor. 1st pbk. ed. 2000, New York: Harper-

Collins Publishers. ix, 246 p.

2. Patel-Schneider, P.F., P. Hayes, and I. Horrocks, OWL Web ontology language - Seman-

tics and abstract syntax, in W3C Recommendation. 2004, World Wide Web Consortium:

Boston, MA. p. W3C Recommendation.

3. Baader, F., et al., eds. The Description Logic Handbook: Theory, Implementation and

Applications. First edition ed. 2003, Cambridge University Press: Cambridge, UK. 574.

4. Korb, K.B. and A.E. Nicholson, Bayesian Artificial Intelligence. Series in Computer

Science and Data. 2003: Chapman & Hall/CRC. 392.

5. Laskey, K.B. and P.C.G. Costa, Of Klingons and Starships: Bayesian Logic for the 23rd

Century, in Uncertainty in Artificial Intelligence: Proceedings of the Twenty-first Confer-

ence. 2005, AUAI Press: Edinburgh, Scotland.

6. Heckerman, D., A. Mamdani, and M.P. Wellman, Real-world applications of Bayesian

networks. Communications of the ACM, 1995. 38(3): p. 24-68.

32

7. Ding, Z. and Y. Peng. A probabilistic extension to ontology language OWL. in 37th An-

nual Hawaii International Conference on System Sciences (HICSS'04). 2004. Big Island,

Hawaii.

8. Gu, T., P.H. Keng, and Z.D. Qing. A Bayesian approach for dealing with uncertainty

contexts. in Second International Conference on Pervasive Computing. 2004. Vienna,

Austria: Austrian Computer Society.

9. Calvanese, D. and G. De Giacomo, Expressive Description Logics, in The Description

Logic Handbook: Theory, Implementations and Applications, F. Baader, et al., Editors.

2003, Cambridge University Press: Cambridge, UK. p. 184-225.

10. Pool, M. and J. Aikin, KEEPER: and Protégé: An elicitation environment for Bayesian

inference tools, in Workshop on Protégé and Reasoning held at the Seventh International

Protégé Conference. 2004: Bethesda, MD, USA.

11. Giugno, R. and T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of SHOQ(D) for

probabilistic ontologies in the Semantic Web. in European Conference on Logics in Artifi-

cial Intelligence (JELIA 2002). 2002. Cosenza, Italy: Springer.

12. Daconta, M.C., L.J. Obrst, and K.T. Smith, The Sematic Web: A guide to the future of

XML, Web services, and knowledge management. 2003, Indianapolis, IN: Wiley Publish-

ing, Inc. 312.

13. Noy, N.F. and A. Rector, Defining N-ary relations on the Semantic Web: Use with indi-

viduals, in W3C Working Draft. 2004, World Wide Web Consortium: Boston, MA. p.

W3C Working Draft.

14. Costa, P.C.G., Bayesian Semantics for the Semantic Web, in Department of Systems Engi-

neering and Operations Research. 2005, George Mason University: Fairfax, VA, USA. p.

312. Available at www.pr-owl.org. Available at http://www.pr-owl.org.

33

Discovery and Uncertainty in Semantic Web Services

Francisco Martín-Recuerda1 and Dave Robertson2

1 Digital Enterprise Research Institute (DERI), Leopold-Franzens Universität Innsbruck,
Technikerstraße 21a, 6020 Innsbruck, Austria
francisco.martin-recuerda@deri.org

http://www.deri.at/
2 University of Edinburgh, School of Informatics, Centre for Intelligence Systems and their

applications, Appleton Tower, Crichton Street, Edinburgh, EH89LE, Scotland
dr@inf.ed.ac.uk

http://www.cisa.informatics.ed.ac.uk/

Abstract. Although Semantic Web service discovery has been extensively
studied in the literature ([7], [12], [15] and [10]), we are far from achieving an
effective, complete and automated discovery process. Using the incidence cal-
culus [4], a truth-functional probabilistic calculus, and a lightweight brokering
mechanism [17], the article explores the suitability of integrating probabilistic
reasoning in Semantic Web services environments. We show how the combina-
tion of relaxation of the matching process and evaluation of web service capa-
bilities based on a previous historical record of successful executions enables
new possibilities in service discovery.

1 Introduction

Discovery composition, invocation and interoperation are the core pillars of the
deployment of Semantic Web services [9]. Discovery has been extensively studied in
the literature ([7], [21], [12] and [15]). In a recent effort, the authors of [10] have
focused on providing a coherent and formal model for Semantic Web services dis-
covery.

Roughly speaking, the relaxation of the matching process between a goal (a func-
tional description of objectives that clients want to achieve using web services) and
web services capabilities (functional descriptions of a service) has been based on the
following set of matching notions [10]: (i) exact-match, a goal and matched web
service capabilities are the same; (ii) plug-in-match, a goal is subsumed by matched
web service capabilities; (iii) subsume-match, matched web service capabilities are
subsumed by a goal; (iv) intersection-match, a goal and matched web service capa-
bilities have some elements in common; and (v) disjoint-match, a goal and matched
web service capabilities does not follow any of the previous definitions. Although
matching notions relax the identification of target web services, in a future scenario in
which thousands of services can potentially fulfill (or partially fulfill) the objectives
described in a goal, a fine-grained classification of matching notions may be neces-
sary for improving the degree of automation of the discovery process. One possible

34

approach is to identify a degree of matching inside of each matching notion. Thus, if
we found one thousand web services that follow an intersection-match pattern, we
need to distinguish which are the web services that are closer to the goal requested
capability.

Brokers [5] bring another interesting approach to the problem of filtering the most
promising web services. Brokers are intermediate systems between clients and service
providers. They store web service capabilities and interfaces, execute matching proc-
esses for each goal that they have received, and manage the interaction between cli-
ents and selected web services. Thus after several interactions, brokers can gain valu-
able knowledge about which web services are providing a good service and which are
not. A quality of service historical record can help in the identification of promising
web services during the matching process executed in a broker.

Current Semantic Web services frameworks (e.g. OWL-S1, WSMO2 and Meteor-
S3) use first order logic, description logics and logic programs to represent web ser-
vice and goal capabilities and execute matching processes mostly based on subsum-
tion checking or query-answering. In this article, we address the two problem areas
raised above as part of a novel architecture for service matching, based on the inci-
dence calculus. The incidence calculus [4] is a truth-functional probabilistic calculus
in which the probabilities of composite formulae are computed from intersections and
unions of the sets of worlds for which the atomic formulae hold true. Incidence Cal-
culus can be easily integrated with other logic formalisms like propositional logic and
logic programs and facilitate the implementation of a fine-grained matching mecha-
nism based on probabilities and quality of service records.

The experiments were executed on a platform called F-X [17], a modular formal
knowledge management system developed at University of Edinburgh. F-X has com-
mon roots with WSMO (both follows the main principles of UPML [3]), and can deal
with WSMO/OWL-S ontologies and web services that fall into DLP fragment [8].
We will show how to specify service capabilities in F-Broker, and how incidence
calculus can be nicely integrated

The paper is structured as follows: section 2 introduces semantic web services, F-
X and Incidence Calculus. In section 3, the key implementation efforts are described,
and testing results are discussed. Section 4 provides a short review of related work on
probabilistic logic in the Semantic Web. Finally, conclusions and future work are
included in section 5.

2 Preliminaries

Commonly in a Virtual Travel Agency scenario, customers require services in
terms of goals (for instance, “I want to book the cheapest flight and hotel available.
The destination is Galway and I want to go on the 4th of November and back to San
Francisco on the 9th of November”). Airline companies and hotels provide services

1 http://www.daml.org/services/owl-s/
2 http://www.wsmo.org/
3 http://lsdis.cs.uga.edu/projects/meteor-s/

35

(“to book a flight please provides: origin, destination, departure date, return date,
valid passport id and credit-card”). The broker is the virtual travel agency that stores
service descriptions related with hotel and flights booking and attend requests from
customers. We will show in this section how F-X can become in an efficient virtual
travel agency for representing, storing and matching services. First we will introduce
F-Broker, the broker component, and then we will describe incidence calculus and
how this formalism can be integrated in F-Broker to improve its matching capabili-
ties.

2.1 F-Broker

F-Broker [17] is an automated broker mechanism of F-X with the responsibility to
identify the assemblies of knowledge components appropriate to a task we wish to
achieve. This information is specified using F-Comp. In a multi-agent environment,
agents advertise their competences (or capabilities, defined in the knowledge compo-
nents they contain) simply by sending these to F-Broker, which records the compe-
tences and the agents who claim to be able to supply them.

When other agent sends a query, the broker processes it, and constructs an internal
description, brokerable structure, based in the competences that previously it re-
corded which describes how the query might be answered. In the final stage the bro-
ker translates its brokerable structure into a sequence of performative statements
describing the messages that will be necessary to establish a communication with the
agents that can attend the query. The broker manages the communication between
agents (request and providers) sending and receiving messages which the appropriate
information to response the query [17].

[17] describes how capabilities and related brokerable structures are represented in
previous versions of F-X. Four forms of capability, C, each of which is implemented
within the expression cap(K, C) , denoting that the agent named K can deliver
capability, C in at least one instance or, if not, will signal failure. Valid options for C
are [17]:
! A unit goal of the form P(A1,…,An) , where P is a predicate name and A1,…, An

are its arguments.
! A conjunctive goal of the form (C1!…!Cm) , where each Ci is a unit goal or a

set expression.
! A set expression of the form setof(X,C,S) , where C is either a unit goal or

a conjunctive goal; X is a tuple of variables appearing in C; and S is a set of in-
stances of those tuples which satisfy C.

! A conditional goal of the form Cc"Cp , where Cc is a unit goal which the agent,
K, will attempt to satisfy (but will not guarantee to satisfy) if the condition, Cp , is
satisfied. Cp is either a unit goal or a conjunctive goal.

Although for simplicity, we will use this version of the capability language, in later

versions of FX, capabilities are represented following the next pattern:
service(Agent, Uri, Ontology, [Service1:-Preconditions1, In-

puts1, Outputs1,Externals1], [...],..., [...]).

36

A simple brokerable structure has the form c(K, C), where K is the name of the

agent which should be able to deliver the capability and C is a description of the
sources of the capability. C can be in any of the following forms [17]:
! A capability available directly from K.
! A term of the form c(K, dq(Q,QC)), where Q is a capability obtainable

from K conditional on its other capabilities and QC describes how these capabili-
ties are obtained.

! A term of the form c(K, pdq(Q,QC,QP)), where Q is a capability obtainable
from K conditional on its other capabilities and on capabilities external to K, and
QC and QP describe how these internal and external capabilities (respectively) are
obtained.

! A term of the form c(conj, co(CQ1,CQ2)), where CQ1 and CQ2 are two
capability structures which must jointly be satisfied.

! A term of the form c(K, cn(Q, G, c(K1,Q1))), where K1 is the name of
an agent different from K which allows capability structure Q to be delivered in
combination with capability structure Q1 provided that the correspondence con-
straints given by G are satisfiable.

 Given a query posed by a client, a broker tries to find all the possible ways in which
agents which have advertised their capabilities might be contacted in order to satisfy
that query. It is necessary a formal representation of this sort of combination of capa-
bilities, for which we use what we call a brokerage structure, of the form c(K, C),
where K is the name of the agent which should be able to deliver the capability and C
is a description of the sources of the capability. C can be in any of the following
forms [17]4:

broker(Q,c(K,Q))

"cap(K,Q).
broker(Q, c(K, dq(Q,QC)))

"cap(K, (Q"C)) !
 broker(C,QC).

broker(Q, c(K1,pdq(Q,QC,QP)))

"p_cap(K1, (Q"C), P) !
 broker(C,QC) !
 e_broker(P,K1,QP).

broker((Q1,Q2), c(conj,
co(CQ1,CQ2)))

"broker(Q1,CQ1) !
 broker(Q2,CQ2).

broker(Q2, c(K2, cn(Q2, G,
c(K1,BQ))))

"corr(K1,Q1,K2,Q2,G) !
 Broker(Q1, c(K1,BQ)).

e_broker(Q, Kn, c(K,Q))

"cap(K,Q) ! not(K=Kn).
e_broker(Q, Kn, c(K, dq(Q,QC)))

"cap(K, (Q"C)) ! not(K=Kn) !
 broker(C,QC).

e_broker(Q, Kn, c(K1,
pdq(Q,QC,QP)))

"p_cap(K1, (Q"C), P) !
 not(K1=Kn) ! broker(C,QC) !
 e_broker(P,K1,QP).

e_broker((Q1,Q2), Kn, c(conj,
co(CQ1, CQ2)))

"e_broker(Q1,Kn,CQ1) !
 e_broker(Q2,Kn,CQ2).

e_broker(Q2, Kn, c(Kn, cn(Q2, G,
c(K1,BQ))))

"corr(K1,Q1,Kn,Q2,G) !
 broker(Q1, c(K1,BQ)).

4 “corr” represents a correspondence, the equivalent of a bridge in UPML [3].

37

2.3 Incidence Calculus

Bundy [4] demonstrated that purely numeric probabilistic formalism can derive
into contradictory results during the calculation of an uncertainty measure of complex
formula. The key result of his analysis is that in general P(A!B)•P(A)*P(B).

Incidence Calculus [4] reviews the notions of probability theory and introduces an
important novelty: “the probability of a sentence is based on a sample space of ele-
ments. Each element defines a situation in a possible world where a sentence can be
true or false. The sample space, T, contains an exhaustive and disjoint set of elements
that for computational reasons should be finite”.

The incidence of a sentence A, i(A), is the subset of W in which sentence A is true.
The dependence or independence of two sentences, A and B, is defined by the
amount of common points of the result of the intersection between their incidences,
i(A) ! i(B) .

The axioms of Incidence Calculus [4] associate a set of theoretic function with
each connective, propositional constant and quantifier of Predicate (Propositional)
Logic so that the incidence of a complex sentence can be calculated from the inci-
dences of its sub-sentences. The probabilities of composite formulae are computed
from intersections and unions of the sets of worlds for which the atomic formulae
hold true. Bundy called the resulting system Predicate (Propositional) Incidence
Logic [4]:

i(T) = {} i(#) = {}
i(A) = i(A) i($A) = i(T)\i(A)
i(A!B) = i(A)%i(B) i(A&B) = i(A)'i(B)
i(A(B) = i($A&B) = (i(T)\ i(A))'i(B)

Thus, probabilities are calculated in the following way [4]:
P(T)= |i(T)| = 1 P(#)= |i(#)| = 0
P(A)= |i(A)| / |i(T)| P($A)= 1-|i(A)| / |i(T)|
P(A!B) = |i(A)%i(B)| / |i(T)|
P(A&B) = (|i(A) 'i(B)| - |i(A)%i(B)|) / |i(T)|
P(A|B) = |i(A)%i(B)| / | i(B)|

As an illustration, consider the following set of incidences describing the weather

of a given week adopted from [4]:
Suppose there are two propositions, P={rainy, windy} and seven possible worlds,

T ={sunday, monday, tuesday, wednesday, thursday, friday, saturday}. Suppose that
each possible world is equally probable (i.e. 1/7), and we learn that rainy is true in
four possible worlds (friday, saturday, sunday and monday) and windy is true in
three possible worlds (Monday, wednesday and Friday). Therefore, we can derivate
the following incidence sets [4]:

i(rainy) = {friday, saturday, sunday, monday}
i(windy)= {monday,wednesday, friday}
i(windy!rainy)= {monday, friday}

Moreover, we can calculate their probabilities in the following way:

38

P(rainy) = |i(rainy)| / |i(T)|=4/7
P(windy) = |i(windy)| / |i(T)|=3/7
P(windy!rainy)= | i(windy)%i(rainy)| / |i(T)|=2/7

2.3 Travel Agency example, writing capabilities in F-Broker

For simplicity we will use the capability language of an earlier version of F-Broker
presented in [17]. We extend the capability language to store in a list the number of
incidences in which each atomic capability was execute successfully (a client used
this service for a given goal). Initially the set of incidences is empty and after several
computations the broker is populating the sets of incidences according with the re-
sults in the requests attended. For our traveling scenario capabilities, we can model
the services related with an airline company in the following way:

n_requests = [1,2,3,4,5, … , 320].

p_capability(airline_aa, ((book_flight(Person, Flight, Ori-
gin, Destination, DepartureDate, ArrivalDate, PurchaseOrder,
Price, Currency, PaymentMethod) :- flight(Flight, Origin,
Destination, DepartureDate, ArrivalDate, Price, Currency)),
pay_order(Person, Nationality, PurchaseOrder, Price, Cur-
rency, PaymentMethod))).

capability(airline_aa, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency), [3,4,5, … ,
301]).

capability(airline_ib, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency), [1,2, … ,
319]).

capability(airline_ba, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency) [6,7, … , 318).

p_capability(financial_vs, pay_order(Person, PurchaseOrder,
Price, Currency, PaymentMethod):-
has_money(Person,Price,Currency, PaymentMethod),
has_passport(Person, Nationality))).

capability(financial_vs,, has_money(Person,Price,Currency,
PaymentMethod), [2,3,4, … , 315]).

capability(financial_ms,, has_money(Person,Price,Currency,
PaymentMethod), [5,6 … , 320]).

capability(financial_amex,, has_money(Person,Price,Currency,
PaymentMethod)[100,105, …, 255]).

capability(police, has_passport(Person, Nationality), [3,4,5,
… , 301]).

39

…

3 Implementation and Results

We present a set of extensions in F-X to allow the system to deal with many OWL-
S service profiles, take advantage of a probabilistic mechanism based on Incidence
Calculus and relax the matching process.

3.1 From Description Logics to Description Logic Programs.

One of the objectives of the implementation was to test F-Broker with real exam-
ples of Semantic Web Services descriptions and also to integrate it in an industrial
standard in order to find possible business applications. Many web services are anno-
tated using DAML-S Service Profile descriptions. So we thought that it could be a
good idea to provide a translator that semi-automatically converts services descrip-
tions from DAML-S into F-Broker Service Description Language (SDL). One of the
difficulties is how to translate DL logical statements into Prolog statements.

Description Logic Programs (DLP)[8], is an expressive fragment of the intersec-
tion of Description Logics (DL) [2] and Logic Programs (LP) [13]. An important
result of the development of this formalism is DLP-fusion, a bidirectional translation
of premises and inferences from DLP fragment of DL to LP, and vice versa from
DLP fragment of LP to DL that allows Prolog to describe on expressive subset of DL.
The implementation of DLP-Fusion in Prolog is straightforward [14] and with this
translator F-Broker is able to import and export knowledge represented using De-
scription Logics.

3.2 Extending matching algorithm

This section describes the necessary extensions to the matching algorithm of F-
Broker in order to incorporate subsumption reasoning, matching notions (exact, plug-
in, subsume, intersection and disjoint), a fine-grained degree of matching for some of
these matching notions, and finally a evaluation algorithm based on historical records.
We follow a bottom-up approach in which any new functionality is tested before we
continue with the implementations of new refinements.

Subsumption reasoning. A Meta-interpreter for a language is an interpreter for
the language written in the language itself [20]. Meta-interpreters are powerful tools
that were widely used for implementing the inference engines of many expert sys-
tems. Using these features the programmers can modify the behaviour of the inter-
preter of the language. Goal reduction is the best known and most widely used meta–
interpreter that in Prolog is called Vanilla [20]. Vanilla does not support subsumption.
So, the first step during the implementation process was the integration of substitution
of vanilla meta-interpreter by the simple subsumption meta-interpreter. The integra-

40

tion of the subsumption mechanism with the brokering algorithm is very simple. It is
only to add a clause subs in any of the brokerable predicates that compound the bro-
kering algorithm for subsumption checking of terms:
brokerable(Q, c(S,Q)) :-
capability(S, Q1),
subs(Q1,Q).

Matching notions. The algorithm that evaluates the degree of matching basically

compares two lists of terms that belong to a web service capability and a goal, verifies
the number of common and no common terms, determines the appropriate notion of
matching following the previous classification and returns a value with the notion of
matching identified. According to the view described in [10], abstract services and
goals are both represented as sets of objects during the service discovery step. Thus,
the calculation of the notion of match can be naturally calculated using incidence
calculus. The implementation is also simple. We substitute the subsumption clause in
the brokerable predicates implemented before for a new clause that call a new algo-
rithm that evaluates and return the notion of match between a capability and goal:

brokerable(Q, c(S,Q,Nmatch)) :-
capability(S, Q1),
matchingnotion(Q1,Q,Nmatch),
Nmatch<>”disjoint”.

Instead of carrying out strings like “disjoint” or “exact”, it should be interesting to

carry numeric values that can be reused for the calculation of a joint probability of
several composed services.

Degree of matching notion. The previous algorithm can be improved by using a

degree of matching that qualified the goodness of the matching notion identified. To
do this, we include a new return variable in the matchingnotion predicate with the
value that the incidence calculus algorithm calculates during the evaluation of com-
mon terms between capability and goal.

brokerable(Q, c(S,Q,Nmatch, Dmatch)) :-
capability(S, Q1),
matchingnotion(Q1,Q,Nmatch, Dmatch),
Nmatch<>”disjoint”.

Evaluation of historical records. The proposal described in the current section

focus the evaluation of the brokerable structures according to an historical record of
previous goals. Associated with any atomic service capability there is a list of suc-
cessful previous goals. This notion of a set of points (previous goals) fits perfectly
with the probabilistic mechanism Incidence Calculus introduced in the previous sec-
tion. In this case, the implementation requires the modification the atomic capabilities
that have to maintain a list of values:

brokerable(Q, c(S, Q, L)) :-
capability(S, Q1, L),

41

A predicate called evaluate finds all the possible broker structures that can satis-

fied a request and evaluate the different structures according with the information of
the history record. During the interaction with the client, the broker should modify the
set of previous request of the service that successfully attend the demand of the client:

|?- evaluate(time(T), L).
L = [c(sd,time(A),[1,2]),2/4] ?
yes

3.3 Discussion

The extended version of F-Broker was tested with a modified version of the eco-
logic knowledge base [19] and slightly adapted versions of several web services ex-
amples from DAML5, Mindswap6 and Carnegie-Mellon7. [14] shows that the use of
incidence calculus does not make significantly worse the performances of the broker
with respect to the original version of F-Broker, and the relaxation of the matching
process and the filtering of services based on a list of previous experiences of goals
improve the matching abilities of the matching algorithm.

In [11] the use of incidence calculus was tested with a more advanced version of
F-Broker that includes a lightweight coordination calculus (LCC) [16], a method for
specifying agent interaction protocols. Lambert and Robertson use incidence calculus
for the evaluation of services based on an historical record. The use of incidence
calculus clearly helps to identify most promising services and thus satisfied client
goals more efficiently.

[14] identified an important limitation of the use of incidence calculus to evaluate
web services based on an historical record of previous goals. This is the incapacity of
the system to handle the changes that the environment undergoes in a specific periods
of time. For instance, the provider of a service with a large and excellent history re-
cord can fall. Any request of the clients that asks for this service will be processed by
the broker and the answer will include the service that the provider cannot supply.
After many requests another service could overcome the re-cord of the unavailable
service, but before this moment the broker will try to execute the wrong service.

4 Related Work

The use of probabilistic logic in the context of the Semantic Web has not been ex-
plored in detail. Even the inventor of the Semantic Web, Sir Tim Berners-Lee, men-
tioned during the dev day lunchtime session at WWW2004 conference8, that the Se-

5 http:// www .daml.org/services/examples.html
6 http://www.mindswap.org/2002/services/
7 http://www. daml.ri.cmu.edu/ont/TaskModeler/TMont-index.html# Request Realtor1
8 http://esw.w3.org/mt/esw/archives/000055.html

42

mantic Web stack does not need a representation of uncertainty. The first serious
attempt to incorporate probabilistic reasoning in the Semantic Web was done with P-
SHOQ[18]. Unfortunately, this work was not taken into consideration by the Seman-
tic Web Community. A detailed description of an early version of this work can be
found in my master thesis, "Dealing with uncertainty in semantic web services" [14].
This work was the first attempt to incorporate incidence calculus in a broker for se-
mantic web services. [11] based on this previous experience incorporates the use of
incidence calculus in an advance version of F-Broker that includes a lightweight
coordination calculus (LCC) [16], a method for specifying agent interaction proto-
cols.

5 Conclusions and Future Work

The relaxation of the matching process and the evaluation web service capabilities
based on a previous historical record of successful executions show the feasibility of
the use of probabilistic logic in Semantic Web services. Uncertainty is present in
functional aspects of Web Services like discovery, composition, interoperation, me-
diation, monitoring and compensation [1]. In this paper, we focused only in discov-
ery, and in [14], composition is also studied.

Incidence calculus was an excellent choice because its simplicity, rigor and com-
patibility with other classical logic formalisms. F-Broker provides an excellent test
platform for the evaluation of incidence calculus in semantic web services. Although
simple, F-Broker provides all basic functionality of a broker and allows the composi-
tion of web services capabilities and the execution of services based on an elementary
vocabulary inspired in KQML. The code is very compact and clean, and new exten-
sions are easily to include.

Future work will concentrate in the migration of the test platform to more realistic
scenarios and the evaluation of other probabilistic logic formalism that combines
logic programming with description logics.

Acknowledgements

This work has been partially supported by the SFI (Science Funds Ireland) under the
DERI-Lion project, and the European Commission under the project Knowledge
Web.

References

1. S. Arroyo and D. Fensel (2004). The Semantic Web Service Usage Process. No published.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider. The Descrip-

tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

43

3. V. R. Benjamins, D. Fensel, E. Motta, S. Decker, M. Gaspari, R. Groenboom, W. Grosso,
M. Musen, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga. The Unified Problem-solving
Method Development Language UPML, February 1999. Esprit Project 27169 IBROW 3
(An Intelligent Brokering Service for Knowledge-Component Reuse on the World-Wide
Web.

4. A. Bundy. Incidence Calculus. In Encyclopedia of Artificial Intelligence, pages 663–668.
1992.

5. K. Decker and K. Sycara. Middle-Agents for the Internet. In Proceedings of ICJCAI-97,
January 1997.

6. T. Finin, Y. Labrou, and J. Mayfield. KQML as a Agent Communication Language. Sof-
ware Agents, 1997. J.M. Bredshaw, AAAI Press/MIT Press.

7. J. Gonzalez-Castillo, D. Trastour, and C. Bartolini. Description logics for matchmaking of
services. In KI-2001 Workshop on Applications of Description Logics, September 2001.

8. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proc. of the Twelfth International World Wide
Web Conference (WWW 2003), pages 48–57, 2003.

9. H. Haas and A. Brown (2004). Web Services Glossary. 2004. http://www.w3.org/TR/ws-
gloss/

10. U. Keller, R. Lara, and A. Polleres (eds.). WSMO Web Service Discovery. Technical re-
port, DERI, November 2004.

11. D. Lambert and D. Robertson. Matchmaking and Brokering Multi-Party Interactions Using
Historical Performance Data. To appear in the Fourth International Joint Conference on
Autonomous Agents and Multi Agent Systems, Utrecht 2005.

12. L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web
Technology. In WWW’03, Budapest, Hungary, May 2003.

13. J.W. Lloyd. Foundations of logic programming (second extended edition). Springer series
in symbolic computation. Springer-Verlag, New York, 1987.

14. F. Martin-Recuerda. Dealing with uncertainty in Semantic Web services. MSc Thesis.
University of Edinburgh. 2003.

15. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service
Capabilities. In ISWC, pages 333–347. Springer Verlag, 2002.

16. Robertson, D.: A lightweight method for coordination of agent oriented web services. In:
Proceedings of the 2004 AAAI Spring Symposium on Semantic Web Services, California,
USA (2004)

17. D. Robertson. F-X: A Formal Knowledge Management System. (unpublished), August
2001.

18. Thomas Lukasiewicz and Rosalba Giugno. P-SHOQ (Dn) : A Probabilistic Extension of
SHOQ(Dn) for Probabilistic Ontologies in the Semantic Web. Technical report. Institut f¨ur
Informations systeme, Technische Universität Wien,

April 2002. Technical Report Nr. 1843-02-06.
19. D. Robertson, A. Bundy, R. Muetzelfeldt, M. Haggith, and M Uschold. Eco-Logic: Logic-

Based Approaches to Ecological Modeling. MIT Press (Logic Programming Series), 1991.
20. L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques, 2nd

Edition. MIT Press, 1994.
21. K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking Among

Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Sys-
tems, pages 173–203, 2002.

44

Ontology Learning and Reasoning —
Dealing with Uncertainty and Inconsistency

Peter Haase, Johanna Völker

Institute AIFB, University of Karlsruhe, Germany
{pha,jvo}@aifb.uni-karlsruhe.de

Abstract. Ontology Learning from text aims at generating domain ontologies
from textual resources by applying natural language processing and machine
learning techniques. It is inherent in the ontology learning process that the ac-
quired ontologies represent uncertain and possibly contradicting knowledge. From
a logical perspective, the learned ontologies are potentially inconsistent knowl-
edge bases that thus do not allow meaningful reasoning directly. In this paper we
present an approach to generate consistent OWL ontologies from learned ontol-
ogy models by taking the uncertainty of the knowledge into account. We further
present evaluation results from experiments with ontologies learned from a Digi-
tal Library.

1 Introduction

Ontology Learning from text aims at generating domain ontologies from a given collec-
tion of textual resources by applying natural language processing and machine learning
techniques. Due to an increasing demand for efficient support in knowledge acquisi-
tion, a number of tools for automatic or semi-automatic ontology learning have been
developed during the last years. Common to all of them is the need for handling the
uncertainty which is inherent in any kind of knowledge acquisition process. Moreover,
ontology-based applications which rely on learned ontologies have to face the challenge
of reasoning with large amounts of imperfect information resulting from automatic on-
tology generation systems.

Causes for the imperfection of information can be found thrice. According to [1]
imperfection can be due to imprecision, inconsistency or uncertainty. Imprecision and
inconsistency are properties of the information itself - either more than one world (in
the case of ambiguous, vague or approximate information) or no world (if contradictory
conclusions can be derived from the information) is compatible with the given informa-
tion. Uncertainty means that an agent, i.e. a computer or a human, has only partial
knowledge about the truth value of a given piece of information. One can distinguish
between objective and subjective uncertainty. Whereas objective uncertainty relates to
randomness referring to the propensity or disposition of something to be true, subjec-
tive uncertainty depends on an agent’s opinion about the truth value of information. In
particular, the agent can consider information as unreliable or irrelevant.

In ontology learning, (subjective) uncertainty is the most prominent form of imper-
fection. This is due to the fact that the results of the different algorithms have to be

45

considered as unreliable or irrelevant due to imprecision and errors introduced during
the ontology generation process. There exist different approaches for the representa-
tion of uncertainty: Uncertainty can for example be represented as part of the learned
ontologies, e.g. using probabilistic extensions to the target knowledge representation
formalism, or at a meta-level as application-specific information associated with the
learned structures.

In Text2Onto [7], a framework for ontology learning and data-driven ontology evo-
lution, we follow a slightly different approach: In a first step, we apply ontology learn-
ing algorithms to generate ontologies based on a Learned Ontology Model (LOM),
which is independent of a concrete ontology representation language. In the LOM, we
represent uncertainty as annotations capturing the confidence about the correctness of
the ontology elements. Most importantly, since the LOM does not have any logical se-
mantics, in this step we do not have to consider logical inconsistencies which are often
introduced during the ontology learning process. In a second step, we transform the
LOM model to a standard logic-based ontology language, in order to be able to apply
standard reasoning over the learned ontologies (e.g. for query answering). In our work
we build on the OWL ontology language, as it is now the standard for representing on-
tologies on the web, and – with its grounding in Description Logics – reasoning with
OWL ontologies is very well understood and tractable. Because of the uncertain and
thus potentially contradicting information in the LOM models, a naive translation of
the LOM model to OWL would result in highly inconsistent ontologies, which do not
allow meaningful reasoning. We therefore make use of the confidence annotations of
the LOM to guide the transformation process.

An obvious alternative approach to dealing with potential inconsistencies is to pro-
hibit primitives that introduce inconsistencies in the first place (e.g. negation, disjoint-
ness). However, as shown in [21], semantically rich primitives such as disjointness of
concepts can be used for effective semantic clarification in ontologies and thus enables
to draw more meaningful conclusions.

As a main contribution of this work we present a transformation that results in an
ontology that is (1) consistent and (2) “most likely correct”, relying on the certainty
information of the LOM model. The transformation is based on the notion of an evalu-
ation function that measures the quality of ontologies with respect to given criteria, i.e.
in our case consistency and certainty.

Application Scenario Intelligent search over document corpora in Digital Libraries is
one application scenario that shows the immediate benefit of the ability to reason over
ontologies automatically learned from text. While search in Digital Libraries nowa-
days is restricted to structured queries against the bibliographic metadata (author, title,
etc.) and to unstructured keyword-based queries over the full text documents, complex
queries that involve reasoning over the knowledge present in the documents are not
possible. Ontology learning enables obtaining the required formal representations of
the knowledge available in the corpus to be able to support such advanced types of
search. This application scenario is the subject of a case study within the Digital Li-
brary of BT (British Telecom) as part of the SEKT1 project. One of the key elements
1 http://www.sekt-project.com/

46

of the case study is to automatically learn ontologies to enhance search and finally be
able support queries of the kind “Find knowledge management applications that sup-
port Peer-to-Peer knowledge sharing.” To validate the work the presented in this paper,
we performed experiments with data from the BT Digital Library.

Overview of the paper The rest of the paper is organized as follows. In Section 2
we recapitulate the foundations of the OWL ontology language, query answering with
OWL ontologies and the role of logical inconsistencies. In Section 3 we introduce the
Learned Ontology Model (LOM). In Section 4 we discuss the transformation of LOM
models to OWL ontologies. We discuss experimental results in Section 5 and present
related work in Section 6 before we conclude in Section 7.

2 Reasoning with OWL

In this section we provide on overview of the OWL ontology language (specifically
OWL-DL), typical reasoning tasks and show why standard reasoning with inconsistent
ontologies does not yield meaningful results.

OWL-DL is a syntactic variant of the SHOIN (D) description logic [15]. Hence,
although several syntaxes for OWL-DL exist, in this paper we use the traditional de-
scription logic notation since it is more compact.

Definition 1 (Ontology).We use a datatype theoryD, a set of concept namesNC , sets
of abstract and concrete individualsNIa andNIc , respectively, and sets of abstract and
concrete role names NRa and NRc , respectively.

The set of SHOIN (D) concepts is defined by the following syntactic rules, where
A is an atomic concept, R is an abstract role, S is an abstract simple role, T(i) are
concrete roles, d is a concrete domain predicate, ai and ci are abstract and concrete
individuals, respectively, and n is a non-negative integer:

C → A | ¬C | C1 " C2 | C1 # C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ n T | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

A SHOIN (D) ontology O is a finite set of axioms of the form concept inclusion ax-
ioms C (D, for C and D concepts, transitivity axioms Trans(R), role inclusion ax-
ioms R (S and T (U , concept assertions C(a), role assertions R(a, b), individual
(in)equalities a ≈ b, and a *≈ b, respectively.

The semantics of the SHOIN (D) description logic is defined via a model-theoretic
semantics, which explicates the relationship between the language syntax and the model
of a domain: An interpretation I = (+I , ·I) consists of a domain set+I , disjoint from
the datatype domain +I

D, and an interpretation function ·I , which maps from individ-
uals, concepts and roles to elements of the domain, subsets of the domain and binary
relations on the domain, respectively2. An interpretation I satisfies an ontology O, if it
2 For a complete definition of the interpretation, we refer the reader to [15].

47

satisfies each axiom in O. Axioms thus result in semantic conditions on the interpreta-
tions. Consequently, contradicting axioms will allow no possible interpretations. This
leads us to the definition of a consistent ontology:

Definition 2 (Consistent Ontology). An ontology O is consistent iff O is satisfiable,
i.e. if O has a model.

To be able to define queries against ontologies, we rely on the notion of entailment:
We use O |= α to denote that the ontology O entails the axiom α (alternatively, we say
that α is a consequence of the ontology O), iff α holds in any model in which O holds.

Definition 3 (Query and Query Answer). A query with respect to an entailment rela-
tion |= is a pair of an ontology O and an axiom α, written ’O |= α?’. An answer to a
query ’O |= α?’ is a value in the set {true, false} as O |= α and O *|= α respectively.

Standard entailment as defined above is explosive, i.e. any axiom is a consequence
of an inconsistent ontology. Namely, if an ontology O is not consistent, then for any
axiom α, O |= α. In other words, query answers for inconsistent ontologies are com-
pletely meaniningless, as for any query the query answer will be true. For a detailed
discussion on inconsistencies in OWL ontologies, we refer the reader to [13].

3 LOM - A Learned Ontology Model

We believe, that linguistic evidence with respect to an ontology can be appropriately
measured by ontology learning techniques which try to capture the ontological com-
mitment in human language. Since ontology learning algorithms such as implemented
in TextToOnto [7] consider the relation of individual ontology elements with the data
the ontology has been engineered from, they allow to assess how well the ontology
reflects the underlying corpus of data. This is especially relevant for an application sce-
nario as introduced in Section 1, which involves question answering in the context of a
Digital Library. In the following we describe the ontology model of Text2Onto and the
ontology learning algorithms used in our approach.

A Learned Ontology Model (LOM) as used by Text2Onto is a collection of instan-
tiated modeling primitives which are independent of a concrete ontology representation
language. These primitives are defined in a declarative fashion which allows for trans-
lating the LOM into any knowledge representation language as long as the expressivity
of the primitives does not exceed the expressivity of the target language. In Text2Onto
we follow a translation-based approach to knowledge engineering. So called ontology
writers are then responsible for translating instantiated modeling primitives into a spe-
cific target knowledge representation language. While a translation to various ontology
languages is possible, in the scope of this paper, we focus on the translation to OWL
ontologies. The modeling primitives we use in Text2Onto and their correspondences in
the OWL ontology model are described by Table 1.

To capture contextual information about ontology elements, such as provenance and
certainty in the learning process, we introduce the notion of rating annotations.

48

Modeling Primitive Explanation OWL
concept A concept C. C

Example: man, person
instance An instance a. a

Example: John, Mary
subconcept-of Concept inheritance. C1 ! C2

Example: subconcept-of(man,person)
instance-of Concept instantiation. C(a)

Example: instance-of(John,person).
relation A relation R between C1 and C2. C1 ! ∀R.C2

Example: love(person,person)
part-of Mereological part-whole relation between C1 and C2. part-of(C1, C2)

Example: part-of(wheel,car)
equivalence Equivalence of concepts C1 and C2. C1 ≡ C2

Example: equivalence(town,city)
equality Equality of instances a1 and a2. a1 ≈ a2

Example: equality(UN,United Nations)
disjointness Disjointness of concepts C1 and C2. C1 ! ¬C2

Example: disjointness(man,woman)

Table 1. LOMModeling Primitives

Definition 4. Let N denote the set of all possible ontology elements and X be a suit-
able representation of a context space, then an ontology rating annotation is a partial
function r : N → X .

In Text2Onto we use these rating annotations to model the certainty of the system
about the correctness of a particular ontology element. In particular, we define a special
ontology rating annotation

rconf : N → [0, 1]

to indicate how confident the system is about the correctness of an ontology element.
The confidences are calculated based on different kinds of evidences provided by the
ontology learning algorithms that indicate the correctness and the relevance of ontology
elements for the domain in question. They can be considered as a corpus-based support
for ontology elements.

Algorithms We now describe for each modeling primitive the algorithms used to
learn corresponding instances thereof. In particular, we explain the way the confidence
and relevance ratings for an instantiated modeling primitive are calculated.
Concepts and Instances Different term weighting measures are used to compute

the relevance of a certain concept or instance with respect to the corpus: Relative Term
Frequency (RTF), TFIDF, Entropy and the C-value/NC-value method in [17].
Subconcept-of Relations In order to learn subconcept-of relations, we have imple-

mented a variety of different algorithms exploiting the hypernym structure of WordNet
[11], matching Hearst patterns [14] in the corpus as well as in the WWW and applying
linguistic heuristics mentioned in [24]. The resulting confidence values of these algo-
rithms are then combined through combination strategies as described in [6].
Instance-of Relations In order to assign instances or named entities appearing in

the corpus to a concept in the ontology Text2Onto relies on a similarity-based approach
extracting context vectors for instances and concepts from the text collection and as-

49

signing instances to the concept corresponding to the vector with the highest similar-
ity with respect to their own vector [8]. Alternatively, we also implemented a pattern-
matching algorithm similar to the one used for discovering part-of relations.
General Relations To learn general relations, Text2Onto employs a shallow pars-

ing strategy to extract subcategorization frames (e.g. hit(subj,obj,pp(with)),
transitive + PP-complement) enriched with information about the frequency of the terms
appearing as arguments [19]. These subcategorization frames are mapped to relations
such as hit(person,thing) and hit with(person,object). The confidence is estimated
on the basis of the frequency of the subcategorization frame as well as of the frequency
with which a certain term appears at the argument position. For the purpose of dis-
covering part-of relations in the corpus, we developed regular expressions matching
lexico-syntactic patterns as described in [5] and implemented an algorithm counting the
occurrences of patterns indicating a part-of relation between two terms t1 and t2, i.e.
part-of(t1,t2). The confidence is then calculated by dividing by the sum of occurrences
of patterns in which t1 appears as a part. The results are combined with confidences
which can be acquired by consulting WordNet for mereological relations.
Equivalence and Equality Following the assumption that terms are similar to the

extent to which they share similar syntactic contexts, we implemented algorithms cal-
culating the similarity between terms on the basis of contextual features extracted from
the corpus, whereby the context of a terms varies from simple word windows to linguis-
tic features extracted with a shallow parser. This corpus-based similarity is then taken
as the confidence for the equivalence of the corresponding concepts or instances.
Disjointness For the extraction of disjointness axioms we implemented a simple

heuristic based on lexico-syntactic patterns. In particular, given an enumeration of noun
phrases NP1, NP2, ...(and|or)NPn we conclude that the concepts C1, C2, ...Ck de-
noted by these noun phrases are pairwise disjoint, where the confidence for the dis-
jointness of two concepts is obtained from the number of evidences found for their
disjointness in relation to the total number of evidences for the disjointness of these
concepts with other concepts.

4 Transforming Learned Ontologies to OWL

In this section we discuss the transformation of learned ontologies as described in the
previous section to OWL ontologies (c.f. Section 2). As mentioned before, a naive trans-
lation that simply disregards the certainty information (rating annotations) would result
in a potentially highly inconsistent knowledge base that would not allow meaningful
reasoning. The goal of the transformation therefore is to obtain an ontology that is (1)
consistent (to allow meaningful reasoning), and (2) captures the most certain informa-
tion while disregarding the potentially erronous information. In general, there may be
many different consistent ontologies obtained from a LOM. The difficulty is to select
the “best” ontology, i.e. the one that will result in most meaningful reasoning.

Evaluation Function In order to able to define what a “good” ontology for a particular
context is, we need to be able to measure the quality of the ontology with respect to
given set of criteria. We therefore define the notion of an ontology evaluation function.

50

Definition 5. LetO be the set of possible ontologies, then an ontology evaluation func-
tion e is a function e : O → [0, 1].

Effectively, the evaluation function provides a total order over the space of possible
ontologies and thus allows to compare given ontologies. Here it is important to note that
the evaluation function can take the rating annotations into account and thus provides
an evaluation measure for a given context. Using the evaluation function, we can define
the problem of translating a given learned ontology LOM to a “discrete” and consistent
OWL ontology as:maxO⊆LOM e(O).
In other words, we try to find the best ontology O based on the knowledge in LOM
that maximizes the evaluation function.

For our particular goal to obtain a consistent ontology capturing the most certain
information, we can define an evaluation function as follows:

ecertainty(O) =

{
max

(∑
α∈O rconf (α)−t

‖O‖ , 0
)

if O is consistent
0 if O is inconsistent

(1)

Let us discuss the intuition behind this function. The basic idea is to maximize the
certainty of the ontology based on the confidence of its individual axioms, as given by
rconf (α). The threshold t is introduced to “filter out” axioms with a confidence below a
minimal value: Adding an axiom with a confidence below t will thus decrease the value
of ontology. An inconsistent ontology is defined to have “no value”.

In general, it will be hard to determine the optimal ontology that maximizes the
evaluation function, as one theoretically would need to search entire space of possible
consistent ontologies. However, in most cases it is not necessary to prove the optimality
of an obtained solution, especially when considering that the rating annotations them-
selves are already somewhat imprecise. Instead it is possible to exploit heuristics to
obtain a “fairly” optimal ontology.

We now outline an algorithm that exploits the behavior of the evaluation function
and local characteristics of inconsistencies to maximize the value. It is based on the
ideas of consistent ontology evolution as presented in [12]. Consistent ontology evolu-
tion ensures the consistency of ontologies when the ontology is changed by mapping
consistency conditions that need to be satisfied to resolution functions that resolve in-
troduced inconsistencies. The task of the resolution function consists of two main steps:
(1) localizing the inconsistency and (2) generating additional changes that lead to an-
other consistent state.

We treat the transformation of a LOM ontology to a consistent OWL ontology in
a similar way as shown in Algorithm 1: Starting with an empty ontology O, we incre-
mentally add all axioms from the learned ontology LOM whose confidence is equal to
or greater than the threshold t. If adding the axioms leads to an inconsistent ontology,
we localize the inconsistency by identifying a minimal inconsistent subontology. (For
the details of this procedure, we refer the reader to [12]). An ontology O′ is a mini-
mal inconsistent subontology of O, if O′ and every subontology of O′ is consistent.
Within this minimal inconsistent subontology we then identify the axiom that is most
uncertain, i.e. has the lowest confidence value. This axiom will be removed from the
ontology, thus resolving the inconsistency.

51

Algorithm 1 Algorithm for Transforming a LOM into a consistent OWL ontology
Require: A learned Ontology LOM
1: O := ∅
2: for all α ∈ LOM, rconf (α) ≥ t do
3: O := O ∪ {α}
4: while O is inconsistent do
5: O′ := minimal inconsistent subontology(O, α)
6: α− := α
7: for all α′ ∈ O′ do
8: if rconf (α′) ≤ rconf (α) then
9: α− := α′

10: end if
11: end for
12: O := O \ {α−}
13: end while
14: end for

5 Evaluation and Experimental Results

We have applied the approach presented in the previous chapter to ontologies learned
from a corpus of 1700 abstracts (from documents about knowledge management) of
the BT Digital Library. The learned ontology (LOM) consisted of 938 concepts and
125 instances. For the concepts, 406 subconcept-of relations and 2322 disjoint-concepts
relations were identified. For the instances, 143 instance-of relations were obtained (as
multiple instantiations is allowed).

For the transformation of the LOM ontology to a discrete OWL ontology, we ap-
plied the evaluation function and algorithms presented in the previous section. Here we
performed an analysis of the influence of the threshold of uncertainty on the transforma-
tion. The results in Table 2 clearly show the connection between the level of uncertainty
and inconsistency introduced:

Threshold t # of Inconsistencies # of Axioms in Result
0.1 40 1706
0.2 8 705
0.4 3 389
0.8 0 197

Table 2. Influence of certainty threshold t on transformation process
A low threshold t results in more uncertain information being allowed in the tar-

get ontology. As a result, the chances for inconsistencies increase. How to choose the
“right” threshold t for the transformation process will very much depend on the ap-
plication scenario, as it essentially means finding a trade-off between the amount of
information learned and the confidence in the correctness of the learned information.

In the following we will discuss typical types of inconsistencies and present exam-
ples of such inconsistencies that were detected and resolved. The first type of inconsis-
tency involves unsatisfiable concepts (often called incoherent concepts) in the T -Box of

52

the ontology. This can for example happen if two concepts are identified to be disjoint,
but at the same time these concepts are in a subconcept-relation (either explicitly as-
serted or inferred). Interestingly, this type of inconsistency often occurred for concepts
for which even for a domain expert the correct relationship is hard to identify, as the
following example shows:

Example 1. The relationship between the concepts Data, Information, and Knowledge
is a very subtle (often philosophical) one, for which one will encounter different defi-
nitions depending on the context. The (inconsistent) definitions learned from our data
set stated that Data is a subconcept of both Information and Knowledge, while
Information andKnowledge are disjoint concepts:

Axiom t Confidence
Data (Information 1.0
Data (Knowledge 1.0
Information (¬Knowledge 0.7

The inconsistency was resolved by removing the disjointness axiom, as its confidence
value was lowest.

The second type of inconsistencies involvesA-Box assertions. Here, typically instances
were asserted to be instances of two concepts that were identified to be disjoint. We
again present an example:

Example 2. HereKaV iDo was identified to be both an instance of Application and a
Tool (based on the abstract of [23]), however, Application and Tool were learned to
be disjoint concepts:

Axiom t Confidence
Application(kavido) 0.46
Tool(kavido) 0.46
Tool (¬Application 0.3

This inconsistency was again resolved by removing the disjointness axiom.

Other types of inconsistencies involving, for example, domain and range restrictions
were not considered in our current experiments, thus being left for future work. Nev-
ertheless, this evaluation showed that inconsistency is an important issue in ontology
learning.

6 Related Work

Since building an ontology for a huge amount of data is a difficult and time consuming
task a number of tools such as TextToOnto [20], the ASIUM system [10], the Mo’k
Workbench [3], OntoLearn [24] or OntoLT [4] have been developed in order to sup-
port the user in constructing ontologies from a given set of (textual) data. So far, none
of these tools explicitly addresses the problem of uncertainty. Text2Onto implements
the first approach towards integrating uncertainty into ontology learning. Obviously,
the LOM of Text2Onto is not probabilistic in a strict mathematical sense. Nevertheless,

53

several researchers have already addressed the issue of integrating and reasoning with
probabilities in knowledge representation formalisms. [9] for example present a proba-
bilistic extension of the Ontology Language OWL which relies on Bayesian Networks
for reasoning. Other researchers have integrated probabilities into first-order logic [2]
or description logics [18]. Fuzzy extensions of OWL have been proposed e.g. in [22].

The approach to dealing with inconsistencies presented in this work is based on the
idea of obtaining a consistent ontology from a LOM to be then able to derive consistent
query answers. A very related approach is that of reasoning with inconsistent ontolo-
gies. A typical technique is the selection of a consistent subontology for a given query,
which yields a consistent query answer (c.f. [16]). The important question here is how
to select the right subontology. While current techniques often rely on syntactic selec-
tion functions, it would also be possible to rely on the rating annotations available in the
LOM to guide the selection function. Another related approach is that of diagnosis and
repair of inconsistencies based on techniques such as pinpointing [21]. The pinpointing
technique tries to identify and remove a minimal set of axioms (in terms of number of
axioms) to obtain a consistent ontology, while we try to identify the most certain con-
sistent ontology. As there are typically multiple possible pinpoints, a combination of
pinpointing with the notion of certainty of our work is an interesting path to explore.

7 Conclusion and Future Work

Ontology learning is a promising technique for automated knowledge acquisition from
text corpora. However, as we have shown, uncertainty and inconsistencies are issues
that need to be dealt with in order to allow meaningful reasoning over the learned on-
tologies. In this paper we have presented how uncertainty can be represented in the
Learned Ontology Model (LOM) and how such learned ontologies can be transformed
to consistent OWL ontologies using the notion of an ontology evaluation function. Our
experiments with ontologies learned from documents of a Digital Library show the fea-
sibility and usefulness of the approach. An extensive evaluation will be performed as
part of a case study within the SEKT project.

It is important to mention that confidence as generated by ontology learning algo-
rithms represent a data-driven approach to the evaluation of ontologies. There are many
other notions of ontology quality and consistency which could be used for the definition
of an ontology evolution function. In particular, we will in the future integrate an auto-
matic approach towards the formal evaluation of ontologies by means of the OntoClean
methodology as presented in [25].

Acknowledgements Research reported in this paper has been financed by the EU in the
IST project SEKT (IST-2003-506826) (http://www.sekt-project.com/).

References

1. P. Smets A. Motro. Uncertainty Management In Information Systems. Springer, 1997.
2. F. Bacchus. Representing and Reasoning with Probabilistic Knowledge. MIT Press, 1990.

54

3. G. Bisson, C. Nedellec, and L. Canamero. Designing clustering methods for ontology build-
ing - The Mo’K workbench. In Proc. of the ECAI Ontology Learning WS, 2000.

4. P. Buitelaar, D. Olejnik, and M. Sintek. OntoLT: A protégé plug-in for ontology extraction
from text. In Proceedings of the International Semantic Web Conference (ISWC), 2003.

5. E. Charniak and M. Berland. Finding parts in very large corpora. In Proceedings of the 37th
Annual Meeting of the ACL, pages 57–64, 1999.

6. P. Cimiano, A. Pivk, L. Schmidt-Thieme, and S. Staab. Learning taxonomic relations from
heterogeneous sources of evidence. In Ontology Learning from Text: Methods, Applications
and Evaluation. IOS Press, 2005.

7. P. Cimiano and J. Völker. A framework for ontology learning and data-driven change dis-
covery. In Proc. of the NLDB’2005, 2005.

8. P. Cimiano and J. Völker. Towards large-scale, open-domain and ontology-based named
entity classification. In Proceedings of the International Conference on Recent Advances in
Natural Language Processing (RANLP’05), SEP 2005.

9. Z. Ding and Y. Peng. A probabilistic extension to ontology language OWL. In Proceedings
of the 37th Hawaii International Conference on System Sciences, 2004.

10. D. Faure and C. Nedellec. A corpus-based conceptual clustering method for verb frames and
ontology. In Proceedings of the LREC Workshop on Adapting lexical and corpus resources
to sublanguages and applications, 1998.

11. C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.
12. P. Haase and L. Stojanovic. Consistent evolution of OWL ontologies. In Proceedings of the

Second European Semantic Web Conference, Heraklion, Greece, 2005, MAY 2005.
13. P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A framework for

handling inconsistency in changing ontologies. In Proc. of the Fourth International Semantic
Web Conference (ISWC’05), NOV 2005.

14. M.A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings
of the 14th International Conference on Computational Linguistics, pages 539–545, 1992.

15. I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to Description Logic
Satisfiability. Journal of Web Semantics, 1(4), 2004.

16. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontologies. In
Proceedings of IJCAI’05, August 2005.

17. J. Tsuji K. Frantzi, S. Ananiadou. The c-value/nc-value method of automatic recognition for
multi -word terms. In Proceedings of the ECDL, pages 585–604, 1998.

18. D. Koller, A. Levy, and A. Pfeffer. P-classic: A tractable probabilistic description logic. In
Proceedings of AAAI-97, pages 390–397, 1997.

19. A. Maedche and S. Staab. Discovering conceptual relations from text. In W. Horn, editor,
Proceedings of the 14th ECAI’2000, 2000.

20. A. Maedche and S. Staab. Ontology learning. In S. Staab and R. Studer, editors, Handbook
on Ontologies, pages 173–189. Springer, 2004.

21. S. Schlobach. Debugging and semantic clarification by pinpointing. In Proceedings of the
Second European Semantic Web Conference, Heraklion, Greece, 2005, pages 226–240, 2005.

22. U. Straccia. Towards a fuzzy description logic for the semantic web (preliminary report). In
Proceedings of the Second European Semantic Web Conference, 2005, pages 167–181, 2005.

23. O. Tamine and R. Dillmann. Kavido: a web-based system for collaborative research and
development processes. Computers in Industry, 52(1):29–45, 2003.

24. P. Velardi, R. Navigli, A. Cuchiarelli, and F. Neri. Evaluation of ontolearn, a methodology
for automatic population of domain ontologies. In Ontology Learning from Text: Methods,
Applications and Evaluation. IOS Press, 2005.

25. J. Völker, D. Vrandecic, and Y. Sure. Automatic evaluation of ontologies (AEON). In Proc.
of the Fourth International Semantic Web Conference (ISWC’05), NOV 2005.

55

56

57

58

59

60

61

62

63

C DR

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP1 2 3 4 5 6 7 8

9 10

1211

13

14 15

16

0

a

b

a b a b a b a b

a b
b

a
a

b

TPPi(a,b) NTPP(a,b) NTPPi(a,b) EQ(a,b)

DC(a,b) EC(a,b) PO(a,b) TPP(a,b)

64

DR

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP

C

1 2 3 4 5 6 7 8

9 10

1211

13

15

16

0

14
D

C DR

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP1 2 3 4 5 6 7 8

9 10

1211

13

14 15

16

0

D

C DR

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP1 2 3 4 5 6 7 8

9 10

1211

13

14 15

16

0

D

C DR

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP1 2 3 4 5 6 7 8

9 10

1211

13

14 15

16

0

D

C DR

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP1 2 3 4 5 6 7 8

9 10

1211

13

14 15

16

0

D

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP

C
DR

1 2 3 4 5 6 7 8

9 10

1211

13

0

16

14
15

DC DR

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP1 2 3 4 5 6 7 8

9 10

1211

13

14 15

16

0

D

CH(L_1)=1.23
IH(L_1)=0.37

CH(L_2)=0.32
IH(L_2)=0.13

IH(L_3)=0.58
IH(L_3)=0.22

CH(L_4)=0.9
IH(L_4)=0.28

CH(L_5)=1.23
IH(L_5)=0.37

CH(L_6)=1.6
IH(L_6)=0.48

CH(L_7)=2.03
IH(L_7)=0.53

65

66

The Fuzzy Description Logic f-SHIN

Giorgos Stoilos1, Giorgos Stamou1, Vassilis Tzouvaras1,
Jeff Z. Pan2 and Ian Horrocks2

1 Department of Electrical and Computer Engineering, National Technical University
of Athens, Zographou 15780, Greece

2 School of Computer Science, The University of Manchester
Manchester, M13 9PL, UK

Abstract. In the Semantic Web information would be retrieved, pro-
cessed, combined, shared and reused in the maximum automatic way
possible. Obviously, such procedures involve a high degree of uncertainty
and imprecision. For example ontology alignment or information retrieval
are rarely true or false procedures but usually involve confidence degrees
or provide rankings. Furthermore, it is often the case that information
itself is imprecise and vague like the concept of a “tall” person, a “hot”
place and many more. In order to be able to represent and reason with
such type of information in the Semantic Web (SW), as well as, enhance
SW applications we present an extension of the Description Logic SHIN
with fuzzy set theory. We present the semantics as well as detailed rea-
soning algorithms for the extended language.

1 Introduction

Uncertainty, like imprecision and vagueness, is a factor that can cause the degra-
dation of the performance of a system. To this end, many applications and do-
mains have incorporated mathematical frameworks that deal with such type of
information, resulting in the improvement of their effectiveness. Applications like
robotics [1], computer vision [2] and many more have embraced frameworks like
fuzzy set theory [3] in order to improve their performance. On the other hand, in
the Semantic Web context, little work has been carried out towards this direc-
tion. Apart from the fact that uncertainty is many times a feature of information
itself, as for example the concepts of a “tall” man, a “fast” car, a “blue” sky
and many more, applications like information retrieval, automatic information
sharing and reuse are hardly true or false procedures but rather a matter of a
degree. The need for covering vagueness in the Semantic Web has been stressed
many times the past years [4–6]. It has been pointed out that dealing with such
information would improve many Semantic Web applications [7–9].

Knowledge in the SW is usually structured in the form of ontologies [10].
This has led to considerable efforts to develop a suitable ontology language,
culminating in the design of the OWL Web Ontology Language [11], which is now
a W3C recommendation. The OWL recommendation actually consists of three

67

languages of increasing expressive power, namely OWL Lite, OWL DL and OWL
Full. OWL Lite and OWL DL are, basically very expressive description logics;
they are almost3 equivalent to the SHIF(D+) and SHOIN (D+) DLs. OWL
Full is clearly undecidable because it does not impose restrictions on the use
of transitive properties. Although the above DL languages are very expressive,
they feature expressive limitations regarding their ability to represent vague and
imprecise knowledge. As obvious, in order to make applications that use DLs
able to cope with vague and uncertain information we have to extend them with
a theory capable of representing this kind of information. One such important
theory is fuzzy set theory.

In the current paper we extend the results obtained in [9] for fuzzy SI (f-SI)
to the language SHIN , thus creating f-SHIN . SHIN extends SI [12] with
number restrictions and role hierarchies [13]. Number restrictions give us the
ability to restrict the number of objects that a certain object is related to by a
specific relation. For example we can state that a car has exactly four wheels,
writing Car ≡ Vehicle"≥ 4hasWheel"≤ 4hasWheel. But though this definition is
correct, it faces many limitations, for example, in the context of image processing
where several wheels of a car in an image might be hidden. Hence a detected
object can belong to a concept like, ≥ 4hasWheel, only to a certain degree. On
the other hand role hierarchies allow us to state sub-role/super-role relations,
as for example the relation that holds between the hasChild and hasOffspring
roles. Regarding expressive power, SHIN is more expressive than OWL-Lite,
ignoring data-types. In the following we will introduce the syntax of f-SHIN
and present a detailed procedure to reason with the extended language.

2 Syntax and Semantics of f-SHIN

In this section we introduce the DL f-SHIN . As pointed out in the fuzzy DL
literature [9,14], fuzzy extensions of DLs involve only the assertion of individuals
to concepts and the semantics of the new language. Hence, as usual we have an
alphabet of distinct concept names (C), role names (R) and individual names
(I). f-SHIN -roles and f-SHIN -concepts are defined as follows:

Definition 1. Let RN ∈ R be a role name, R an f-SHIN -role, C,D f-SHIN -
concepts. Valid f-SHIN -roles are defined by the abstract syntax: R ::= RN | R−.
The inverse relation of roles is symmetric, and to avoid considering roles such as
R−−, we define a function Inv, which returns the inverse of a role, more precisely
Inv(R) := RN− if R = RN and Inv(R) := RN if R = RN−.

The set of f-SHIN concepts is the smallest set such that:

1. every concept name C ∈ CN is an f-SHIN -concept,
2. if C and D are f-SHIN -concepts, R is an f-SHIN -role, S a simple f-

SHIN -role [15] and p ∈ N, then (C &D), (C "D), (¬C), (∀R.C), (∃R.C),
(≥ pS) and (≤ pS) are also f-SHIN concepts.

3 They also provide annotation properties, which Description Logics don’t.

68

Table 1. Semantics of f-SHIN -concepts

!I(a) = 1

⊥I(a) = 0
(¬C)I(a) = 1− CI(a)

(C $D)I(a) = max(CI(a), DI(a))
(C %D)I(a) = min(CI(a), DI(a))
(∀R.C)I(a) = infb∈∆I{max(1−RI(a, b), CI(b))}
(∃R.C)I(a) = supb∈∆I{min(RI(a, b), CI(b))}
(≥ pR)I(a) = supb1,...,bp∈∆I minp

i=1 RI(a, bi)

(≤ pR)I(a) = infb1,...,bp+1∈∆I maxp+1
i=1 {1−RI(a, bi)}

(R−)I(b, a) = RI(a, b)

A fuzzy TBox is a finite set of fuzzy concept axioms. Let A be a concept
name, C a f-SHIN -concept. Fuzzy concept axioms of the form A) C are
called fuzzy inclusion introductions; fuzzy concept axioms of the form A ≡ C
are called fuzzy equivalence introductions. Note that how to deal with general
fuzzy concept inclusions [12] still remains an open problem in fuzzy concept
languages. A fuzzy RBox is a finite set of fuzzy role axioms. Fuzzy role axioms
of the form Trans(RN), where RN is a role name, are called fuzzy transitive
role axioms; fuzzy role axioms of the form R) S are called fuzzy role inclusion
axioms. We use the notation)* to denote the transitive-reflexive closure of).
A role R is called sub-role (super-role) of a role S if R)* S (S)* R). A fuzzy
ABox is a finite set of fuzzy assertions. A fuzzy assertion [14] is of the form
〈a : C!"n〉, 〈(a, b) : R!"n〉, where !" stands for ≥, >,≤ or < or a , .= b, for a, b ∈ I.
Intuitively, a fuzzy assertion of the form 〈a : C ≥ n〉 means that the membership
degree of a to the concept C is at least equal to n. We call assertions defined
by ≥, > positive assertions, while those defined by ≤, < negative assertions [9].
A fuzzy knowledge base Σ is a triple 〈T ,R,A〉, where T is a fuzzy TBox,
R is a fuzzy RBox and A is a fuzzy ABox. A pair of assertions are called
conjugated if they impose contradicting restrictions. For example, the pair of
assertions 〈φ ≥ n〉 and 〈φ < m〉, with n ≥ m contradict to each other. In the
presence of role hierarchies one should also take into consideration possible sub-
or super-roles when checking for such contradictions. For example the assertions
〈(a, b) : R ≥ 0.7〉 and 〈(a, b) : P ≤ 0.4〉, with P)* R are conjugated. For a detailed
description of the possible conjugated pairs the reader is referred to [14].

The semantics of fuzzy DLs are provided by a fuzzy interpretation [9, 14]. A
fuzzy interpretation is a pair I = 〈∆I , ·I〉 where the domain ∆I is a non-empty
set of objects and ·I is a fuzzy interpretation function, which maps an individ-
ual name a to elements of aI ∈ ∆I and a concept name A (role name R) to
a membership function AI : ∆I → [0, 1] (RI : ∆I × ∆I → [0, 1]). Moreover,
fuzzy interpretations are extended to interpret arbitrary f-SHIN -concepts and
roles. The complete set of semantics is depicted in Table 1, where inf stands
for the infimum and sup for the supremum of a set. Note that apart from the

69

fuzzy number restrictions, the interpretation of fuzzy concepts and concept con-
structors is the usual one found in the DL literature [9,14,16], where the Gödel
conjunction (t(a,b)=min(a,b)), the Gödel disjunction (u(a,b)=max(a,b)) and
the Kleen-Dienes fuzzy implication (J (a,b)=max(1-a,b)) are used for perform-
ing the fuzzy set theoretic operations. The semantics of fuzzy number restric-
tions were first presented in [17]. We chose to follow these semantics because,
as pointed out in [17], they are derived by the First-Order formulae of classical
number restrictions [17]. In [9] the naming fKD-SI was used due to the usage
of the Kleen-Dienes fuzzy implication. Since we also use the same implication
here, from now on, we will refer to the extended language as fKD-SHIN .

An fKD-SHIN -concept C is satisfiable iff there exists some fuzzy interpre-
tation I for which there is some a ∈ ∆I such that CI(a) = n, and n ∈ (0, 1].
A fuzzy interpretation I satisfies a fuzzy TBox T iff ∀a ∈ ∆I , AI(a) ≤ CI(a)
for each A) C in T and AI(a) = CI(a) for each A ≡ C in T . The seman-
tics of fuzzy inclusion axioms is the usual one found in fuzzy set theory [3].
A fuzzy interpretation I satisfies a fuzzy RBox R iff ∀a, b, c ∈ ∆I , RI(a, c) ≥
supb∈∆I{min(RI(a, b), RI(b, c))} for each Trans (R) inR, and ∀〈a, b〉 ∈ ∆I×∆I ,
RI(a, b) ≤ SI(a, b) for each R) S. Note that the semantics of role inclusion ax-
ioms R) S imply Inv(R)) Inv(S). A fuzzy relation R, defined over the domain
X × X, is called sup-min transitive iff R(x, z) ≥ supy∈X min(R(x, y), R(y, z)).
Given a fuzzy interpretation I, I satisfies 〈a : C ≥ n〉 if CI(aI) ≥ n, I satis-
fies 〈(a, b) : R ≥ n〉 if RI(aI , bI) ≥ n, while I satisfies a , .= b if aI ,= bI . The
satisfiability of fuzzy assertions with ≤, > and < is defined analogously. A fuzzy
interpretation satisfies a fuzzy ABox A if it satisfies all fuzzy assertions in A.
In this case, we say I is a model of A. If A has a model then we say that it
is consistent. Finally, a fuzzy knowledge base Σ is satisfiable iff there exists a
fuzzy interpretation I which satisfies all axioms in Σ. Moreover, Σ entails an
assertion 〈φ!"n〉 or a fuzzy concept inclusion axiom C) D, written Σ |= 〈φ!"n〉
or Σ |= C) D, iff any model of Σ also satisfies the fuzzy assertion or fuzzy con-
cept inclusion axiom, respectively. The problems of entailment and subsumption
can be reduced to fuzzy knowledge base satisfiability as is shown in [14].

Since a fuzzy ABox A might contain many positive assertions for the same
individual (pair of individuals), without forming a contradiction, it is in our
interest to compute what is the best lower and upper truth-value bounds of a
fuzzy assertion. In [14] the concept of greatest lower bound of a fuzzy assertion
w.r.t. Σ was defined as glb(Σ, φ) = sup{n : Σ |= 〈φ ≥ n〉}, and that of a least
upper bound as, lub(Σ, φ) = inf{n : Σ |= 〈φ ≤ n〉}, where φ represents a crisp
assertion of the form a : C or (a, b) : R. Observe that sup ∅ = 0 and inf ∅ = 1.
A procedure to solve the best truth-value bound was provided in [14]. Such a
procedure can also be used in our framework.

3 A fuzzy tableau for fKD-SHIN ABoxes

Most of the inference services of fuzzy DLs, can be reduced to the problem of con-
sistency checking for ABoxes [14]. Consistency is usually checked with tableaux

70

algorithms that try to construct a fuzzy tableau for a fuzzy ABox A [9], which is
an abstraction of a model of A [13]. The tableau has a forest-like structure with
nodes representing the individuals that appear in A, and edges between nodes,
which represent the relations that hold between two individuals. Each node is
labelled with a set of triples of the form 〈D, !", n〉, which denote the concept,
the type of inequality and the membership degree that the individual of the
node has been asserted to belong to D. We call such triples membership triples.
For triples of a single node, the concepts of conjugated, positive and negative
triples can be defined in the obvious way. Since the expansion rules decompose
the initial concept, the concepts that appear in triples are sub-concepts of the
initial concept. Sub-concepts of a concept D are denoted by sub(D). The set of
all sub-concepts that appear within an ABox is denoted by sub(A).

Since the De’Morgan laws are satisfied by the operations we use in the current
paper [3] all concepts are assumed to be in their negation normal form (NNF)
[18]. In the following we use the symbols ! and " as a placeholder for the
inequalities ≥, > and ≤, < and the symbol !" as a placeholder for all types of
inequations. Furthermore we use the symbols !"−,!− and "− to denote their
reflections. For example the reflection of ≤ is ≥ and that of > is <.

Definition 2. Let A be an fKD-SHIN ABox, RA the set of roles occurring in
A together with their inverses, IA the set of individuals in A, X the set {≥, >
,≤, <} and R a fuzzy RBox. A fuzzy tableau T for A w.r.t. R is a quadruple
(S, L, E, V) such that:

– S is a non-empty set of individuals (nodes),
– L : S → 2sub(A) × X × [0, 1] maps each element of S to membership triples,
– E : RA → 2S×S × X × [0, 1] maps each role to membership triples,
– V : IA → S maps individuals occurring in A to elements in S.

For all s, t ∈ S, C, E ∈ sub(A), and R ∈ RA, T satisfies:

1. If 〈¬C, !", n〉 ∈ L(s), then 〈C, !"−, 1− n〉 ∈ L(s),

2. If 〈C % E, !, n〉 ∈ L(s), then 〈C, !, n〉 ∈ L(s) and 〈E, !, n〉 ∈ L(s),

3. If 〈C $ E, ", n〉 ∈ L(s), then 〈C, ", n〉 ∈ L(s) and 〈E, ", n〉 ∈ L(s),

4. If 〈C $ E, !, n〉 ∈ L(s), then 〈C, !, n〉 ∈ L(s) or 〈E, !, n〉 ∈ L(s),

5. If 〈C % E, ", n〉 ∈ L(s), then 〈C, ", n〉 ∈ L(s) or 〈E, ", n〉 ∈ L(s),

6. If 〈∀R.C, !, n〉 ∈ L(s) and 〈〈s, t〉, !′, n1〉 ∈ E(R) is conjugated with 〈〈s, t〉, !−, 1−
n〉, then 〈C, !, n〉 ∈ L(t),

7. If 〈∃R.C, ", n〉 ∈ L(s) and 〈〈s, t〉, !, n1〉 ∈ E(R) is conjugated with 〈〈s, t〉, ", n〉,
then 〈C, ", n〉 ∈ L(t),

8. If 〈∃R.C, !, n〉 ∈ L(s), then there exists t ∈ S such that 〈〈s, t〉, !, n〉 ∈ E(R) and
〈C, !, n〉 ∈ L(t),

9. If 〈∀R.C, ", n〉 ∈ L(s), then there exists t ∈ S such that 〈〈s, t〉, "−, 1− n〉 ∈ E(R)
and 〈C, ", n〉 ∈ L(t),

10. If 〈∃S.C, ", n〉 ∈ L(s), and 〈〈s, t〉, !, n1〉 ∈ E(R) is conjugated with 〈〈s, t〉, ", n〉,
for some R -* S with Trans(R), then 〈∃R.C, ", n〉 ∈ L(t),

71

11. If 〈∀S.C, !, n〉 ∈ L(s) and 〈〈s, t〉, !′, n1〉 ∈ E(R) is conjugated with 〈〈s, t〉, !−, 1−
n〉, for some R -* S with Trans(R), then 〈∀R.C, !, n〉 ∈ L(t),

12. 〈〈s, t〉, !", n〉 ∈ E(R) iff 〈〈t, s〉, !", n〉 ∈ E(Inv(R)),

13. If 〈〈s, t〉, !, n〉 ∈ E(R) and R -* S then, 〈〈s, t〉, !, n〉 ∈ E(S),

14. If 〈≥ pR, !, n〉 ∈ L(x), then |{t ∈ S | 〈〈s, t〉, !, n〉 ∈ E(R)}| ≥ p,

15. If 〈≤ pR, ", n〉 ∈ L(x), then |{t ∈ S | 〈〈s, t〉, "−, 1− n〉 ∈ E(R)}| ≥ p + 1,

16. If 〈≥ pR, ", n〉 ∈ L(x), then |{t ∈ S | 〈〈s, t〉, !, ni〉 ∈ E(R)}| ≤ p − 1, conjugated
with 〈〈s, t〉, ", n〉,

17. If 〈≤ pR, !, n〉 ∈ L(x), then |{t ∈ S | 〈〈s, t〉, !′, ni〉 ∈ E(R)}| ≤ p conjugated with
〈〈s, t〉, !−, 1− n〉,

18. There do not exist two conjugated triples in any label of any individual x ∈ S,

19. If 〈a : C!"n〉 ∈ A, then 〈C, !", n〉 ∈ L(V(a)),

20. If 〈(a, b) : R!"n〉 ∈ A, then 〈〈V(a),V(b)〉, !", n〉 ∈ E(R),

21. If a . .= b ∈ A, then V(a) .= V(b)

Properties 10 and 11 are a consequence of the fact that the supremum and
infimum restrictions have to be preserved, when relations that have transitive
sub-roles participate in negative existential and positive value restrictions. The
membership degrees that the concepts are being propagated, in Properties 10 and
11, is the same as in the nodes that cause propagation. The proof of this property
is quite technical and omitted here. Properties 14-17 are a direct consequence of
the semantics of fuzzy number restrictions and the fact that from the De’ Morgan
laws we can establish equivalences between negative and positive triples.

Lemma 1. An fKD-SHIN -ABox A is consistent w.r.t. R iff there exists a
fuzzy tableau for A w.r.t. R.

3.1 The Tableaux Algorithm

In order to decide ABox consistency a procedure that constructs a fuzzy tableau
for an fKD-SHIN ABox has to be determined. In the current section we will
provide the technical details for constructing a correct tableaux algorithm. As
pointed out in [13] algorithms that decide consistency of an ABox work on
completion-forests rather than on completion-trees. This is because an ABox
might contain several individuals with arbitrary roles connecting them. Such a
forest is a collection of trees that correspond to the individuals in the ABox.

Nodes in the completion-forest are labelled with a set of triples L(x) (node
triples), which contain membership triples. More precisely we define L(x){〈C, !", n〉},
where C ∈ sub(A) and n ∈ [0, 1]. Furthermore, edges 〈x, y〉 are labelled with a
set L(〈x, y〉) (edge triples) defined as, L(〈x, y〉) = {〈R, !", n〉}, where R ∈ RA.
The algorithm expands the tree either by expanding the set L(x), of a node x
with new triples, or by adding new leaf nodes.

If nodes x and y are connected by an edge 〈x, y〉, then y is called a successor
of x and x is called a predecessor of y, ancestor is the transitive closure of
predecessor. A node x is called an S − neighbour of a node x if for some R with

72

Table 2. Tableaux expansion rules

Rule Description
(¬) if 1. 〈¬C, "#, n〉 ∈ L(x)

2. and 〈C, "#−, 1− n〉 &∈ L(x)
then L(x) → L(x) ∪ {〈C, "#−, 1− n〉}

()!) if 1. 〈C1) C2, !, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1, !, n〉, 〈C2, !, n〉} &⊆ L(x)

then L(x) → L(x) ∪ {〈C1, !, n〉, 〈C2, !, n〉}
(+") if 1. 〈C1 + C2, ", n〉 ∈ L(x), x is not indirectly blocked, and

2. {〈C1, ", n〉, 〈C2, ", n〉} &⊆ L(x)
then L(x) → L(x) ∪ {〈C1, ", n〉, 〈C2, ", n〉}

(+!) if 1. 〈C1 + C2, !, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1, !, n〉, 〈C2, !, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for some C ∈ {〈C1, !, n〉, 〈C2, !, n〉}
()") if 1. 〈C1) C2, ", n〉L(x), x is not indirectly blocked, and

2. {〈C1, ", n〉, 〈C2, ", n〉} ∩ L(x) = ∅
then L(x) → L(x) ∪ {C} for some C ∈ {〈C1, ", n〉, 〈C2, ", n〉}

(∃!) if 1. 〈∃R.C, !, n〉 ∈ L(x), x is not blocked,
2. x has no R-neighbour y connected with a triple 〈P∗, !, n〉, P /* R and 〈C, !, n〉 ∈ L(y)

then create a new node y with L(〈x, y〉) = {〈R, !, n〉}, L(y) = {〈C, !, n〉},
(∀") if 1. 〈∀R.C, ", n〉 ∈ L(x), x is not blocked,

2. x has no R-neighbour y connected with a triple 〈P∗, "−, 1− n〉, P /* R and 〈C, ", n〉 ∈ L(y)
then create a new node y with L(〈x, y〉) = {〈R, "−, 1− n〉}, L(y) = {〈C, ", n〉},

(∀!) if 1. 〈∀R.C, !, n〉 ∈ L(x), x is not indirectly blocked, and
2. x has an R-neighbour y with 〈C, !, n〉 &∈ L(y) and
3. 〈∗, !−, 1− n〉 is conjugated with the positive triple that connects x and y

then L(y) → L(y) ∪ {〈C, !, n〉},
(∃") if 1. 〈∃R.C, ", n〉 ∈ L(x), x is not indirectly blocked and

2. x has an R-neighbour y with 〈C, ", n〉 &∈ L(y) and
3. 〈∗, ", n〉 is conjugated with the positive triple that connects x and y

then L(y) → L(y) ∪ {〈C, ", n〉},
(∀+) if 1. 〈∀R.C, !, n〉 ∈ L(x), x is not indirectly blocked, and

2. there is some P , with Trans(P), and P /* R, x has a P -neighbour y with, 〈∀P.C, !, n〉 &∈ L(y), and
3. 〈∗, !−, 1− n〉 is conjugated with the positive triple that connects x and y

then L(y) → L(y) ∪ {〈∀P.C, !, n〉},
(∃+) if 1. 〈∃R.C, ", n〉 ∈ L(x), x is not indirectly blocked and

2. there is some P , with Trans(P), and P /* R, x has a P -neighbour y with, 〈∃P.C, ", n〉 &∈ L(y), and
3. 〈∗, ", n〉 is conjugated with the positive triple that connects x and y

then L(y) → L(y) ∪ {〈∃P.C, ", n〉},
(≥!) if 1. 〈≥ pR, !, n〉 ∈ L(x), x is not blocked,

2. there are no p R-neighbours y1, ..., yp connected to x with a triple 〈P∗, !, n〉, P /* R,
3. and yi &= yj for 1 ≤ i < j ≤ p

then create p new nodes y1, ..., yp, with L(〈x, yi〉) = {〈R, !, n〉} and yi &= yj for 1 ≤ i < j ≤ p

(≤") if 1. 〈≤ pR, ", n〉 ∈ L(x), x is not blocked,
then apply (≥!)-rule for the triple 〈≥ (p + 1)R, "−, 1− n〉

(≤!) if 1. 〈≤ pR, !, n〉 ∈ L(x), x is not indirectly blocked,
2. there are p + 1 R-neighbours y1, ..., yp+1 connected to x with a triple 〈P∗, !′, ni〉, P /* R,
3. which is conjugated with 〈P∗, !−, 1− n〉, and there are two of them y, z, with no y & .= z and
4. y is neither a root node nor an ancestor of z

then 1. L(z) → L(z) ∪ L(y) and
2. if z is an ancestor of x
then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉) −→ ∅
4. Set u & .= z for all u with u & .= y

(≥") if 1. 〈≥ pR, ", n〉 ∈ L(x), x is not indirectly blocked,
then apply (≤!)-rule for the triple 〈≤ (p− 1)R, "−, 1− n〉

(≤r!) if 1. 〈≤ pR, !, n〉 ∈ L(x),
2. there are p + 1 R-neighbours y1, ..., yp+1 connected to x with a triple 〈P∗, !′, ni〉, P /* R,
3. conjugated with 〈P∗, !−, 1− n〉, and there are two of them y, z, both root nodes, with no y & .= z

then 1. L(z) → L(z) ∪ L(y) and
2. For all edges 〈y, w〉:
i. if the edge 〈z, w〉 does not exist, create it with L(〈z, w〉) = ∅
ii. L(〈z, w〉) −→ L(〈z, w〉) ∪ L(〈y, w〉)

3. For all edges 〈w, y〉:
i. if the edge 〈w, z〉 does not exist, create it with L(〈w, z〉) = ∅
ii. L(〈w, z〉) −→ L(〈w, z〉) ∪ L(〈w, y〉)

4. Set L(y) = ∅ and remove all edges to/from y
5. Set u & .= z for all u with u & .= y and set y

.
= z

(≥r") if 1. 〈≥ pR, ", n〉 ∈ L(x),
then apply (≤r!)-rule for the triple 〈≤ (p− 1)R, "−, 1− n〉

73

R)* S either y is a successor of x and L(〈x, y〉) = 〈R, !", n〉 or y is a predecessor
of x and L(〈y, x〉) = 〈Inv(R), !", n〉. We then say that the edge triple connects x
and y to a degree of n.

A node x is blocked iff it is not a root node and it is either directly or indirectly
blocked. A node x is directly blocked iff none of its ancestors is blocked, and it
has ancestors x′, y and y′ such that: (i) y is not a root node, (ii) x is a successor
of x′ and y a successor of y′, (iii) L(x) = L(y) and L(x′) = L(y′) and, (iv)
L(〈x′, x〉) = L(〈y′, y〉). In this case we say that y blocks x. A node y is indirectly
blocked iff none of its ancestors is blocked, or it is a successor of a node x and
L(〈x, y〉) = ∅.

The algorithm initializes a forest FA to contain a root node xi
0, for each

individual ai ∈ IA occurring in the ABoxA and additionally {〈Ci, !", n〉}∪L(xi
0),

for each assertion of the form 〈ai : Ci!"n〉 in A, and an edge 〈xi
0, x

j
0〉 if A contains

an assertion 〈(ai, aj) : Ri!"n〉, with {〈Ri, !", n〉}∪L(〈xi
0, x

j
0〉) for each assertion of

the form 〈(ai, aj) : Ri!"n〉 in A. At last we initialize the relation , .= as xi
0 ,

.= xj
0 if

ai ,
.= aj ∈ A and the relation .= to be empty. FA is then expanded by repeatedly

applying the rules from Table 2. We use the notation R∗ to denote either the
role R or the role returned by Inv(R), and the notation 〈∗, !", n〉, to denote any
role that participates in such a triple.

For a node x, L(x) is said to contain a clash if it contains one of the following:
(a) two conjugated pairs of triples, (b) one of the triples 〈⊥,≥, n〉, 〈4,≤, n〉,
with n > 0, n < 1, 〈⊥, >, n〉, 〈4, <, n〉 〈C,<, 0〉 or 〈C,>, 1〉, (c) some triple
〈≤ pR, !, n〉 ∈ L(x) and x has p + 1 R-neighbours y0, ..., yp, connected to x
with a triple 〈P ∗,!′, ni〉, P)* R, which is conjugated with 〈P ∗,!−, 1− n〉, and
yi ,= yj , for all 0 ≤ i < j ≤ p, or (d) some triple 〈≥ pR, ", n〉 ∈ L(x) and x has p
R-neighbours y0, ..., yp−1, connected to x with a triple 〈P ∗,!, ni〉, P)* R, which
is conjugated with 〈P ∗,", n〉, and yi ,= yj , for all 0 ≤ i < j ≤ p. A completion-
forest is clash-free if none of its nodes contains a clash, and it is complete if none
of the expansion rules is applicable.

Lemma 2. Let A be an fKD-SHIN ABox and R a fuzzy RBox. Then

1. when started for A and R the tableaux algorithm terminates
2. A has a fuzzy tableau w.r.t. R if and only if the expansion rules can be applied

to A and R such that they yield a complete and clash-free completion forest.

4 Related Work

Much work has been carried out towards combining fuzzy logic and description
logics during the last decade. The initial idea was presented by Yen in [19], where
a structural subsumption algorithm was provided in order to perform reasoning.
The DL language used was a sub-language of the basic DL ALC. Reasoning in
fuzzy ALC was latter presented in [14], as well as in other approaches [20, 21],
where an additional concept constructor, called membership manipulator was
included in the extended language. In all these approaches tableaux decision
procedures were presented for performing reasoning services. The operations

74

used to interpret the concept constructors in all these approaches were the same
ones as in our context. Approaches towards more expressive DLs, are presented
in [16], where the DL is ALCQ, and in [17], where the language is SHOIN (D+).
The former one also included fuzzy quantifiers, which is a new novel idea for fuzzy
DLs. Unfortunately, in both these approaches only the semantics of the extended
languages were provided and no reasoning algorithms. As far as we know the
most expressive fuzzy DL presented till now, which also covers reasoning, is
fKD-SI, appeared in [9]. The present work provides an extension of the latter
one to an even more expressive DL, namely SHIN .

5 Conclusions

The importance and role that uncertainty, like vagueness (fuzziness) and im-
precision, plays in the Semantic web context, as well as to many applications
that use DLs to capture, represent and perform reasoning with domain knowl-
edge has been stressed many times in the literature [4–8]. To this extent we
have presented an extension of the very expressive description logic SHIN with
fuzzy set theory. Description logics are very powerful and expressive logical for-
malisms, which are used by ontology creation languages in the Semantic Web
context. Moreover, fuzzy set theory is one very important theory for capturing
and dealing with vagueness. Additionally, we have presented a detailed reasoning
algorithm for deciding fuzzy ABox consistency. In order to achieve this goal we
have provided an investigation of the properties of fuzzy cardinalities, in order
to provide sound rules for such types of concept constructors. As far as future
directions are concerned, these will include the extension of the SHOIN (G) de-
scription with fuzzy set theory. SHOIN (G) extends SHIN with nominals [22]
and datatype groups [23].

Acknowledgements.

This work is supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507482).

References

1. Kim, W., Ko, J., Chung, M.: Uncertain robot environment modelling using fuzzy
numbers. Fuzzy Sets and Systems 61 (1994) 53–62

2. Krishnapuram, R., Keller, J.: Fuzzy set theoretic approach to computer vision: An
overview. In: IEEE International Conference on Fuzzy Systems. (1992) 135–142

3. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall (1995)

4. Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy extension of swrl, W3C
Workshop on Rule Languages for Interoperability (2005)

5. Matheus, C.: Using ontology-based rules for situation awareness and information
fusion, W3C Work. on Rule Languages for Interoperability (2005)

75

6. Kifer, M.: Requirements for an expressive rule language on the semantic web, W3C
Workshop on Rule Languages for Interoperability (2005)

7. Zhang, L., Yu, Y., Zhou, J., Lin, C., Yang, Y.: An enhanced model for searching
in semantic portals. In: Int. WWW Conference Committee. (2005)

8. Bechhofer, S., Goble, C.: Description Logics and Multimedia - Applying Lessons
Learnt from the GALEN Project. In: KRIMS 96 Workshop on Knowledge Repre-
sentation for Interactive Multimedia Systems, ECAI 96, Budapest (1996)

9. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy description
logic for multimedia knowledge representation, Proc. of the International Workshop
on Multimedia and the Semantic Web (2005)

10. Lassila, O., R.Swick, R.: Resource Description Framework (RDF) Model and Syn-
tax Specification – W3C Recommendation 22 February 1999. Technical report,
World Wide Web Consortium (1999)

11. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., eds., L.A.S.: OWL Web Ontology Language Reference (2004)

12. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation 9 (1999) 385–410

13. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with Individuals for the Descrip-
tion Logic SHIQ. In MacAllester, D., ed.: CADE-2000. Number 1831 in LNAI,
Springer-Verlag (2000) 482–496

14. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence and Research 14 (2001) 137–166

15. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In: Proceedings of the 6th International Conference on Logic for Program-
ming and Automated Reasoning (LPAR’99). Number 1705 in LNAI, Springer-
Verlag (1999) 161–180

16. Sánchez, D., Tettamanzi, G.: Generalizing quantification in fuzzy description logic.
In: Proceedings 8th Fuzzy Days in Dortmund. (2004)

17. Straccia, U.: Towards a fuzzy description logic for the semantic web. In: Proceed-
ings of the 2nd European Semantic Web Conference. (2005)

18. Hollunder, B., Nutt, W., Schmidt-Schaus, M.: Subsumption algorithms for concept
description languages. In: European Conference on Artificial Intelligence. (1990)
348–353

19. Yen, J.: Generalising term subsumption languages to fuzzy logic. In: In Proc of
the 12th Int. Joint Conf on Artificial Intelligence (IJCAI-91). (1991)

20. Tresp, C., Molitor, R.: A description logic for vague knowledge. In: In proc of the
13th European Conf. on Artificial Intelligence (ECAI-98). (1998)

21. Hölldobler, S., Khang, T.D., Störr, H.P.: A fuzzy description logic with hedges as
concept modifiers. In: Proceedings InTech/VJFuzzy’2002. (2002) 25–34

22. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic.
In: Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence. (2001)

23. Pan, J.Z.: Web Ontology Reasoning in the SHOQ(Dn) Description Logic. In: Carlos
Areces and Maartin de Rijke, editors,Proceedings of the Methods for Modalities 2
(M4M-2). (2001) ILLC, University of Amsterdam.

76

77

78

79

80

81

82

83

84

85

86

Stratified Probabilistic Description Logic Programs

Thomas Lukasiewicz!

Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Rome, Italy

lukasiewicz@dis.uniroma1.it

Abstract. In previous work, we have introduced probabilistic description logic
programs (or pdl-programs), which are a combination of description logic pro-
grams (or dl-programs) under the answer set and well-founded semantics with
Poole’s independent choice logic. Such programs are directed towards sophisti-
cated representation and reasoning techniques that allow for probabilistic uncer-
tainty in the Rules, Logic, and Proof layers of the Semantic Web. In this paper,
we continue this line of research. We concentrate on the special case of strati-
fied probabilistic description logic programs (or spdl-programs). In particular, we
present an algorithm for query processing in such pdl-programs, which is based
on a reduction to computing the canonical model of stratified dl-programs.

1 Introduction

The Semantic Web initiative [2,9] aims at an extension of the current World Wide Web
by standards and technologies that help machines to understand the information on
the Web so that they can support richer discovery, data integration, navigation, and
automation of tasks. The main ideas behind it are to add a machine-readable meaning to
Web pages, to use ontologies for a precise definition of shared terms in Web resources,
to make use of KR technology for automated reasoning from Web resources, and to
apply cooperative agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where theOntology layer,
in form of the OWL Web Ontology Language [30,18] (recommended by the W3C),
is currently the highest layer of sufficient maturity. OWL consists of three increasingly
expressive sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL Lite and
OWL DL are essentially very expressive description logics with an RDF syntax [18].
As shown in [16], ontology entailment in OWL Lite (resp., OWLDL) reduces to knowl-
edge base (un)satisfiability in the description logic SHIF(D) (resp., SHOIN (D)).
On top of the Ontology layer, the Rules, Logic, and Proof layers of the Semantic Web
will be developed next, which should offer sophisticated representation and reasoning
capabilities. As a first effort in this direction, RuleML (Rule Markup Language) [3] is
an XML-based markup language for rules and rule-based systems, whereas the OWL
Rules Language [17] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the
Rules and the Ontology layer. In particular, it is crucial to allow for building rules on top
! Alternate address: Institut für Informationssysteme, Technische Universität Wien, Favoriten-
straße 9-11, A-1040 Vienna, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at.

87

of ontologies, that is, for rule-based systems that use vocabulary from ontology knowl-
edge bases. Another type of combination is to build ontologies on top of rules, which
means that ontological definitions are supplemented by rules or imported from rules.
Towards this goal, the works [7,8] have proposed description logic programs (or dl-
programs), which are of the form KB = (L,P), where L is a knowledge base in a de-
scription logic and P is a finite set of description logic rules (or dl-rules). Such dl-rules
are similar to usual rules in logic programs with negation as failure, but may also con-
tain queries to L in their bodies, which are given by special atoms (on which possibly
default negation may apply). Another important feature of dl-rules is that queries to L
also allow for specifying an input from P , and thus for a flow of information from P
to L, besides the flow of information from L to P , given by any query to L. Hence, de-
scription logic programs allow for building rules on top of ontologies, but also (to some
extent) building ontologies on top of rules. In this way, additional knowledge (gained
in the program) can be supplied to L before querying. The semantics of dl-programs
was defined in [7] and [8] as an extension of the answer set semantics by Gelfond and
Lifschitz [12] and the well-founded semantics by Van Gelder, Ross, and Schlipf [29],
respectively, which are the two most widely used semantics for nonmonotonic logic
programs. The description logic knowledge bases in dl-programs are specified in the
well-known description logics SHIF(D) and SHOIN (D).

In [22], towards sophisticated representation and reasoning techniques that also al-
low for modeling probabilistic uncertainty in the Rules, Logic, and Proof layers of the
Semantic Web, we have presented probabilistic description logic programs (or pdl-
programs), which generalize dl-programs under the answer set and well-founded se-
mantics by probabilistic uncertainty. They have been developed as a combination of
dl-programs with Poole’s independent choice logic (ICL) [25].

It is important to point out that Poole’s ICL is a powerful representation and rea-
soning formalism for single- and also multi-agent systems, which combines logic and
probability, and which can represent a number of important uncertainty formalisms,
in particular, influence diagrams, Bayesian networks, Markov decision processes, and
normal form games [25]. Furthermore, Poole’s ICL also allows for natural notions of
causes and explanations as in Pearl’s structural causal models [10].

In this paper, we continue this line of research. We concentrate on the special case of
stratified pdl-programs (or spdl-programs). In particular, as a main new contribution, we
present an algorithm for query processing in spdl-programs. It is based on a reduction
to computing the canonical model of stratified dl-programs, which can be done by a
finite sequence of finite fixpoint iterations. This shows especially that query processing
in spdl-programs is conceptually easier than query processing in general pdl-programs,
which is reducible to computing the set of all answer sets of general dl-programs and
solving linear optimization problems. To my knowledge, this paper and [22] are the first
works that combine description logic programs with probabilistic uncertainty.

The rest of this paper is organized as follows. In Section 2, we recall the description
logics SHIF(D) and SHOIN (D) as well as stratified description logic programs.
Section 3 defines stratified probabilistic description logic programs, and Section 4 deals
with query processing in such programs. In Section 5, we discuss related work. Sec-
tion 6 summarizes the main results and gives an outlook on future research.

88

2 Preliminaries

In this section, we first recall the description logics SHIF(D) and SHOIN (D). We
then recall positive and stratified description logic programs (or dl-programs) under
their canonical semantics [7], which combine description logics and normal programs.
They consist of a knowledge base L in a description logic and a finite set of description
logic rules P . Such rules are similar to usual rules in logic programs with negation as
failure, but may also contain queries to L, possibly default negated.

2.1 SHIF(D) and SHOIN (D)

We first describe SHOIN (D). We assume a set D of elementary datatypes. Each
d∈D has a set of data values, called the domain of d, denoted dom(d). Let dom(D) =⋃

d∈D
dom(d). A datatype is either an element of D or a subset of dom(D) (called

datatype oneOf). Let A, RA, RD, and I be nonempty finite pairwise disjoint sets of
atomic concepts, abstract roles, datatype roles, and individuals, respectively. Let R−

A

denote the set of all inverses R− of abstract roles R∈RA.
A role is an element of RA ∪R−

A
∪RD. Concepts are inductively defined as fol-

lows. Every C ∈A is a concept, and if o1, o2, . . . ∈ I, then {o1, o2, . . .} is a concept
(called oneOf). If C andD are concepts and if R∈RA ∪R−

A
, then (C #D), (C $D),

and ¬C are concepts (called conjunction, disjunction, and negation, respectively), as
well as ∃R.C, ∀R.C, ≥nR, and ≤nR (called exists, value, atleast, and atmost restric-
tion, respectively) for an integer n≥ 0. If d∈D and U ∈RD, then ∃U.d, ∀U.d, ≥nU ,
and ≤nU are concepts (called datatype exists, value, atleast, and atmost restriction, re-
spectively) for an integer n≥ 0. We write) and ⊥ to abbreviate C $ ¬C and C # ¬C,
respectively, and we eliminate parentheses as usual.

An axiom is of one of the following forms: (1) C +D, where C andD are concepts
(concept inclusion); (2) R+S, where either R,S ∈RA or R,S ∈RD (role inclusion);
(3) Trans(R), where R∈RA (transitivity); (4) C(a), where C is a concept and a∈ I
(concept membership); (5)R(a, b) (resp., U(a, v)), whereR∈RA (resp., U ∈RD) and
a, b∈ I (resp., a∈ I and v ∈dom(D)) (role membership); and (6) a= b (resp., a ,= b),
where a, b∈ I (equality (resp., inequality)). A knowledge base L is a finite set of axioms.
For decidability, number restrictions in L are restricted to simple R∈RA [19].

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

For the semantics of SHIF(D) and SHOIN (D), we refer the reader to [16].

Example 2.1. An online store (such as amazon.com) may use a description logic knowl-
edge base to classify and characterize its products. For example, suppose that (1) text-
books are books, (2) personal computers and cameras are electronic products, (3) books
and electronic products are products, (4) every product has at least one related product,
(5) only products are related to each other, (6) tb ai and tb lp are textbooks, which are
related to each other, (7) pc ibm and pc hp are personal computers, which are related to
each other, and (8) ibm and hp are providers for pc ibm and pc hp, respectively. This
knowledge is expressed by the following description logic knowledge base L1:

Textbook ! Book ; PC " Camera ! Electronics; Book " Electronics ! Product ;

89

Product ! ≥ 1 related ; ≥ 1 related " ≥ 1 related− ! Product ;
Textbook(tb ai); Textbook(tb lp); PC (pc ibm); PC (pc hp);
related(tb ai, tb lp); related(pc ibm, pc hp);
provides(ibm, pc ibm); provides(hp, pc hp).

2.2 Syntax of Description Logic Programs

We assume a function-free first-order vocabulary Φ with nonempty finite sets of con-
stant and predicate symbols, and a set X of variables. A term is a constant symbol
from Φ or a variable from X . If p is a predicate symbol of arity k≥ 0 from Φ and
t1, . . ., tk are terms, then p(t1, . . ., tk) is an atom. A negation-as-failure (NAF) literal
is an atom a or a default-negated atom not a. A normal rule r is of the form

a ← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0 , (1)

where a, b1, . . . , bm are atoms. We refer to a as the head of r, denoted H(r), while
the conjunction b1, . . . , bk,not bk+1, . . . ,not bm is the body of r; its positive (resp.,
negative) part is b1, . . . , bk (resp., not bk+1, . . . ,not bm). We define B(r) = B+(r) ∪
B−(r), where B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A normal pro-
gram P is a finite set of normal rules. Informally, a dl-program consists of a descrip-
tion logic knowledge base L and a generalized normal program P , which may contain
queries to L. In such a query, it is asked whether a certain description logic axiom or its
negation logically follows from L or not. Formally, a dl-query Q(t) is either

(a) a concept inclusion axiom F or its negation ¬F ; or
(b) of the forms C(t) or ¬C(t), where C is a concept and t is a term; or
(c) of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom has the form DL[S1op1p1, . . . , Smopm pm;Q](t), where each Si is a con-
cept or role, opi ∈ {., −∪}, pi is a unary resp. binary predicate symbol, Q(t) is a dl-
query, and m≥ 0. We call p1, . . . , pm its input predicate symbols. Intuitively, opi =.
(resp., opi = −∪) increases Si (resp., ¬Si) by the extension of pi. A dl-rule r is of
form (1), where any b∈B(r) may be a dl-atom. A dl-program KB =(L, P) consists
of a description logic knowledge base L and a finite set of dl-rules P . Ground terms,
atoms, literals, etc., are defined as usual. The Herbrand base of P , denoted HBP , is
the set of all ground atoms with standard predicate symbols in P and constant symbols
in Φ. Let ground(P) be the set of all ground instances of dl-rules in P w.r.t. HBP .

Example 2.2. Consider the dl-program KB1 =(L1, P1), where L1 is the description
logic knowledge base from Example 2.1, and P1 is the following set of dl-rules:

(1) pc(pc 1); pc(pc 2); pc(pc 3);
(2) brand new(pc 1); brand new(pc 2);
(3) vendor(dell, pc 1); vendor(dell, pc 2); vendor(dell, pc 3);
(4) avoid(X) ← DL[Camera](X),not offer(X);
(5) offer(X) ← DL[PC % pc;Electronics](X),not brand new(X);

90

(6) provider(P) ← vendor(P, X), DL[PC % pc;Product](X);
(7) provider(P) ← DL[provides](P, X), DL[PC % pc;Product](X);
(8) similar(X, Y) ← DL[related](X, Y);
(9) similar(X, Z) ← similar(X, Y), similar(Y, Z).

The above dl-rules express that (1) pc 1, pc 2, and pc 3 are additional personal com-
puters, (2) pc 1 and pc 2 are brand new, (3) dell is the vendor of pc 1, pc 2, and pc 3,
(4) a customer avoids all cameras that are not on offer, (5) all electronic products that
are not brand new are on offer, (6) every vendor of a product is a provider, (7) every
entity providing a product is a provider, (8) all related products are similar, and (9) the
binary similarity relation on products is transitively closed.

2.3 Semantics of Positive Description Logic Programs

In the sequel, let KB=(L, P) be a dl-program. An interpretation I relative to P is any
I ⊆HBP . We say that I is a model of a∈HBP under L, denoted I |=L a, iff a∈ I . We
say that I is a model of a ground dl-atom a=DL[S1op1 p1, . . . , Smopmpm;Q](c) un-
der L, denoted I |=L a, iff L∪

⋃m

i=1
Ai(I) |= Q(c), where Ai(I)= {Si(e) | pi(e)∈I},

for opi =.; andAi(I)= {¬Si(e) | pi(e)∈I}, for opi = −∪. A ground dl-atom a ismono-
tonic relative to KB = (L,P) iff I ⊆ I ′⊆HBP implies that if I |=L a then I ′ |=L a. In
this paper, we consider only monotonic ground dl-atoms, but observe that one can also
define dl-atoms that are not monotonic; see [7]. We say that I is a model of a ground
dl-rule r iff I |=L H(r) whenever I |=L B(r), that is, I |=L a for all a∈B+(r) and
I ,|=L a for all a∈B−(r). We say that I is a model of a dl-program KB = (L,P),
denoted I |=KB , iff I |=L r for every r∈ ground(P). We say that KB is satisfiable
(resp., unsatisfiable) iff it has some (resp., no) model.

We say that KB=(L, P) is positive iff no dl-rule in P contains default-negated
atoms. Like ordinary positive programs, every positive dl-programKB is satisfiable and
has a unique least model, denotedMKB , that canonically characterizes its semantics.

2.4 Semantics of Stratified Description Logic Programs

We next define stratified dl-programs and their canonical semantics. They are intuitively
composed of hierarchic layers of positive dl-programs linked via default negation. Like
ordinary stratified normal programs, they are always satisfiable and can be assigned a
canonical minimal model via a number of iterative least models.

For any dl-program KB = (L,P), we denote by DLP the set of all ground dl-atoms
that occur in ground(P). An input atom of a∈DLP is a ground atom with an in-
put predicate of a and constant symbols in Φ. A (local) stratification of KB =(L,P)
is a mapping λ : HBP ∪DLP → {0, 1, . . . , k} such that (i) λ(H(r))≥λ(b′) (resp.,
λ(H(r))> λ(b′)) for each r ∈ ground(P) and b′ ∈ B+(r) (resp., b′ ∈ B−(r)), and
(ii) λ(a)≥λ(b) for each input atom b of each a ∈ DLP , where k≥ 0 is the length of λ.
For i∈ {0, . . . , k}, let KB i = (L,Pi)= (L, {r∈ ground(P) |λ(H(r)) = i}), and let
HBPi

(resp., HB!
Pi
) be the set of all b∈HBP such that λ(b)= i (resp., λ(b)≤ i). A dl-

program KB =(L,P) is (locally) stratified iff it has a stratification λ of some length
k≥ 0. We define its iterative least modelsMi⊆HBP with i∈ {0, . . . , k} as follows:

91

(i) M0 is the least model of KB0;
(ii) if i> 0, thenMi is the least model ofKB i such thatMi|HB!

Pi−1
=Mi−1|HB!

Pi−1
.

The canonical model of the stratified dl-program KB , denoted MKB , is then defined
as Mk. Observe that MKB is well-defined, since it does not depend on a particular λ.
Furthermore,MKB is in fact a minimal model of KB .

3 Stratified Probabilistic Description Logic Programs

In this section, we define stratified probabilistic dl-programs as a combination of dl-
programs with Poole’s independent choice logic (ICL) [25]. Poole’s ICL is based on
ordinary acyclic logic programs under different “atomic choices”, where each atomic
choice along with an acyclic logic program produces a first-order model, and one then
obtains a probability distribution over the set of first-order models by placing a distri-
bution over the different atomic choices. In stratified probabilistic dl-programs, we here
use stratified dl-programs rather than ordinary acyclic logic programs.

3.1 Syntax

We assume a function-free first-order vocabulary Φ with nonempty finite sets of con-
stant and predicate symbols, and a set of variables X , as in Section 2. We use HBΦ

(resp., HU Φ) to denote the Herbrand base (resp., universe) over Φ. In the sequel, we as-
sume that HBΦ is nonempty. We define classical formulas by induction as follows. The
propositional constants false and true, denoted ⊥ and), respectively, and all atoms
are classical formulas. If φ and ψ are classical formulas, then also ¬φ and (φ∧ψ).
A conditional constraint is of the form (ψ|φ)[l, u] with reals l, u∈ [0, 1] and classi-
cal formulas φ and ψ. We define probabilistic formulas inductively as follows. Every
conditional constraint is a probabilistic formula. If F and G are probabilistic formu-
las, then also ¬F and (F ∧G). We use (F ∨G), (F ⇐G), and (F ⇔G) to abbreviate
¬(¬F ∧¬G), ¬(¬F ∧G), and (¬(¬F ∧G)∧¬(F ∧¬G)), respectively, and adopt the
usual conventions to eliminate parentheses. Ground terms, ground formulas, substitu-
tions, and ground instances of probabilistic formulas are defined as usual.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ. Any
member A∈C is called an alternative of C and any element a∈A an atomic choice
of C. A total choice of C is a setB⊆HBΦ such that |B∩A|= 1 for allA∈C. A prob-
ability µ on a choice space C is a probability function on the set of all total choices
of C. Since C and all its alternatives are finite, µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A

µ(a)= 1 for all A∈C, and (ii) µ(B)= Πb∈Bµ(b)
for all total choices B of C. Intuitively, (i) associates a probability with each atomic
choice of C, and (ii) assumes independence between the alternatives of C.

A probabilistic dl-program (or pdl-program) KB =(L,P,C, µ) consists of a dl-
program (L,P), a choice space C such that (i)

⋃
C ⊆HBP and (ii) no atomic choice

in C coincides with the head of any dl-rule in ground(P), and a probability µ on C. A
stratified probabilistic dl-program (or spdl-program) is a pdl-programKB=(L,P,C, µ)
where (L,P) is stratified. A probabilistic query to KB has the form ?F or the form

92

?(β|α)[L,U], where F is a probabilistic formula, β, α are classical formulas, and L,U
are variables. The correct answer to ?F is the set of all substitutions θ such that Fθ is
a consequence of KB . The tight answer to ?(β|α)[L,U] is the set of all substitutions θ
such that ?(β|α)[L,U]θ is a tight consequence of KB . In the following paragraphs, we
define the notions of consequence and tight consequence.

Example 3.1. Consider the spdl-program KB1 =(L1, P1, C1, µ1), where L1 is as in
Example 2.1, and P1 is as in Example 2.2 except that the dl-rules (4) and (5) are replaced
by the dl-rules (4’) and (5’), respectively, and the dl-rules (10) and (11) are added:

(4’) avoid(X) ← DL[Camera](X),not offer(X), avoid pos;
(5’) offer(X) ← DL[PC % pc;Electronics](X),not brand new(X), offer pos;
(10) buy(C, X) ← needs(C, X), view(X),notavoid(X), v buy pos;
(11) buy(C, X) ← needs(C, X), buy(C, Y), also buy(Y, X), a buy pos.

Furthermore, let C1 be given by {{avoid pos, avoid neg}, {offer pos, offer neg},
{v buy pos, v buy neg}, {a buy pos, a buy neg}}, and let µ1(avoid pos) = 0.9,
µ1(avoid neg) = 0.1, µ1(offer pos) = 0.9, µ1(offer neg) = 0.1, µ1(v buy pos) =
0.7, µ1(v buy neg) = 0.3, µ1(a buy pos) = 0.7, and µ1(a buy neg) = 0.3.

Here, the new dl-rules (4’) and (5’) express that the dl-rules (4) and (5) actually
only hold with the probability 0.9. Furthermore, (10) expresses that a customer buys a
needed product that is viewed and not avoided with the probability 0.7, while (11) says
that a customer buys a needed product x with probability 0.7, if she bought another
product y, and every customer that previously had bought y also bought x.

In a probabilistic query, one may ask for the tight probability bounds that a cus-
tomer c buys a needed product x, if (i) c bought another product y, (ii) every customer
that previously had bought y also bought x, (iii) x is not avoided, and (iv) c has been
shown product x (the result to this query may, e.g., help to decide whether it is useful
to make a customer automatically also view product x when buying y):

?(buy(c, x) |needs(c, x)∧buy(c, y)∧also buy(y, x)∧view(x)∧notavoid(x))[L, U] .

3.2 Semantics

A world I is a subset of HBΦ. We use IΦ to denote the set of all worlds over Φ. A vari-
able assignment σ maps each variable X ∈X to an element of HU Φ. It is extended to
all terms by σ(c)= c for all constant symbols c from Φ. The truth of classical formulas
φ in I under σ, denoted I |=σ φ (or I |= φ when φ is ground), is inductively defined by:

• I |=σ p(t1, . . ., tk) iff p(σ(t1), . . ., σ(tk)) ∈ I ;
• I |=σ ¬φ iff not I |=σ φ ; and I |=σ (φ ∧ ψ) iff I |=σ φ and I |=σ ψ.

A probabilistic interpretation Pr is a probability function on IΦ (that is, since IΦ

is finite, a mapping Pr : IΦ→ [0, 1] such that all Pr(I) with I ∈ IΦ sum up to 1).
The probability of a classical formula φ in Pr under a variable assignment σ, denoted
Prσ(φ) (or Pr(φ) when φ is ground), is defined as the sum of all Pr(I) such that
I ∈ IΦ and I |=σ φ. For classical formulas φ and ψ with Prσ(φ)> 0, we use Prσ(ψ|φ)
to abbreviate Prσ(ψ ∧φ) /Prσ(φ). The truth of probabilistic formulas F in Pr under
a variable assignment σ, denoted Pr |=σ F , is inductively defined as follows:

93

• Pr |=σ (ψ|φ)[l, u] iff Prσ(φ)= 0 or Prσ(ψ|φ)∈ [l, u] ;
• Pr |=σ ¬F iff not Pr |=σ F ; and Pr |=σ (F ∧G) iff Pr |=σ F and Pr |=σ G.

A probabilistic interpretation Pr is a model of a probabilistic formula F iff Pr |=σ

F for every variable assignment σ. We say that Pr is the canonical model of an spdl-
program KB = (L,P,C, µ) iff every world I ∈ IΦ with Pr(I)> 0 is the canonical
model of (L, P ∪{p← | p∈B}) for some total choiceB ofC such that Pr(I)= µ(B).
Notice that every KB has a unique canonical model Pr . A probabilistic formula F is
a consequence of KB , denoted KB ‖∼F , iff every model of KB is also a model of F .
A conditional constraint (ψ|φ)[l, u] is a tight consequence of KB , denoted KB ‖∼ tight

(ψ|φ)[l, u], iff l (resp., u) is the infimum (resp., supremum) of Prσ(ψ|φ) subject to all
models Pr of KB and all variable assignments σ with Prσ(φ)> 0. Here, we assume
that l =1 and u = 0, when Prσ(φ)= 0 for all models Pr of KB and all σ.

4 Query Processing

The canonical model of an ordinary positive (resp., stratified) normal logic program P
has a fixpoint characterization in terms of an immediate consequence operator TP ,
which generalizes to dl-programs. This can be used for a bottom-up computation of the
canonical model of a positive (resp., stratified) dl-program, and thus also for computing
the canonical model of an spdl-program and for query processing in spdl-programs.

4.1 Canonical Models of Positive Description Logic Programs

For a dl-program KB = (L,P), define the operator TKB on the subsets of HBP as
follows. For every I ⊆HBP , let

TKB (I) = {H(r) | r∈ ground(P), I |=L * for all *∈B(r)} .

If KB is positive, then TKB is monotonic. Hence, TKB has a least fixpoint, denoted
lfp(TKB). Furthermore, lfp(TKB) can be computed by finite fixpoint iteration (given
finiteness of P and the number of constant symbols in Φ). For every I ⊆HBP , we
define T i

KB (I) = I , if i = 0, and T i
KB (I) = TKB (T i−1

KB (I)), if i > 0.

Theorem 4.1. For every positive dl-program KB =(L,P), it holds that lfp(TKB) =
MKB . Furthermore, lfp(TKB)=

⋃n

i=0
T i
KB (∅)= Tn

KB (∅), for some n≥ 0.

4.2 Canonical Models of Stratified Description Logic Programs

We next describe a fixpoint iteration for stratified dl-programs. Using Theorem 4.1, we
can characterize the canonical model MKB of a stratified dl-program KB =(L,P) as
follows. Let T̂ i

KB (I) = T i
KB (I) ∪ I , for all i ≥ 0.

Theorem 4.2. SupposeKB =(L,P) has a stratification λ of length k≥ 0. DefineMi ⊆
HBP , i∈ {−1, 0, . . . , k}, as follows:M−1 = ∅, andMi = T̂ni

KBi
(Mi−1) for i≥ 0, where

ni≥ 0 such that T̂ni

KBi
(Mi−1)= T̂ni+1

KBi
(Mi−1). Then, Mk =MKB .

94

4.3 Query Processing in Stratified Probabilistic Description Logic Programs

Fig. 1 shows Algorithm canonical model, which computes the canonical model Pr of a
given spdl-program KB = (L,P,C, µ). This algorithm is essentially based on a reduc-
tion to computing the canonical model of stratified dl-programs (see step (4)), which
can be done using the above finite sequence of finite fixpoint iterations.

Algorithm canonical model
Input: spdl-program KB = (L, P, C, µ).
Output: canonical model Pr of KB .
1. for every interpretation I ∈ IΦ do
2. Pr(I) := 0;
3. for every total choice B of C do begin
4. compute the canonical model I of the stratified dl-program (L, P ∪ {p ← | p∈B});
5. Pr(I) := µ(B);
6. end;
7. return Pr .

Fig. 1. Algorithm canonical model

Fig. 2 shows Algorithm tight answer, which computes tight answers θ = {L/l, U/u}
for a given query ?(β|α)[L,U] to a given spdl-program KB . The algorithm first com-
putes the canonical model of KB in step (1) and then the tight answer in steps (2)–(8).

Algorithm tight answer
Input: spdl-program KB = (L, P, C, µ) and probabilistic query ?(β|α)[L, U].
Output: tight answer θ= {L/l, U/u} for ?(β|α)[L, U] to KB .
1. Pr := canonical model(KB);
2. l := 1;
3. u := 0;
4. for every ground instance β′|α′ of β|α do begin
5. l := min(l,Pr(β′|α′));
6. u := max(u,Pr(β′|α′));
7. end;
8. return θ= {L/l, U/u}.

Fig. 2. Algorithm tight answer

5 Related Work

Related approaches can be roughly divided into (a) description logic programs with
non-probabilistic uncertainty, (b) probabilistic generalizations of description logics, and
(c) probabilistic generalizations of web ontology languages. Note that related work on
description logic programs without uncertainty is discussed in [7,8,22].

95

As for (a), Straccia [28] combines description logic programs with non-probabilistic
uncertainty using interval annotations. To my knowledge, the present paper and [22] are
the first ones on description logic programs with probabilistic uncertainty.

As for (b), Giugno and Lukasiewicz [13] present a probabilistic generalization of the
expressive description logic SHOQ(D) behind DAML+OIL, which is based on lexico-
graphic probabilistic reasoning. In earlier work, Heinsohn [15] and Jaeger [20] present
probabilistic extensions to the description logic ALC, which are essentially based on
probabilistic reasoning in probabilistic logics. Koller et al. [21] present a probabilistic
generalization of the CLASSIC description logic, which uses Bayesian networks as un-
derlying probabilistic reasoning formalism. Note that fuzzy description logics, such as
the ones by Straccia [26,27], are less closely related to probabilistic description logics,
since fuzzy uncertainty deals with vagueness, rather than ambiguity and imprecision.

As for (c), especially the works by Costa [4], Pool and Aikin [24], and Ding and
Peng [6] present probabilistic extensions to OWL. In particular, Costa’s work [4] is
semantically based on multi-entity Bayesian networks, while [6] has a semantics in
standard Bayesian networks. In closely related work, Fukushige [11] proposes a ba-
sic framework for representing probabilistic relationships in RDF. Finally, Nottelmann
and Fuhr [23] present pDAML+OIL, which is a probabilistic generalization of the web
ontology language DAML+OIL, and a mapping to stratified probabilistic datalog.

6 Summary and Outlook

We have continued the research on probabilistic dl-programs. We have focused on the
special case of stratified probabilistic dl-programs. In particular, we have presented an
algorithm for query processing in such probabilistic dl-programs, which is based on a
reduction to computing the canonical model of stratified dl-programs.

A topic of future research is to further enhance stratified probabilistic dl-programs
towards a possible use for Web Services. This may be done by exploiting and general-
izing further features of Poole’s ICL for dynamic and multi-agent systems [25].

Acknowledgments. This work has been supported by a Heisenberg Professorship of
the German Research Foundation. I thank the reviewers of this paper for their construc-
tive comments, which helped to improve this work.

References

1. G. Antoniou. Nonmonotonic rule systems on top of ontology layers. In Proceedings ISWC-
2002, LNCS 2342, pp. 394–398.

2. T. Berners-Lee. Weaving the Web. Harper, San Francisco, CA, 1999.
3. H. Boley, S. Tabet, and G. Wagner. Design rationale for RuleML: A markup language for
Semantic Web rules. In Proceedings SWWS-2001, pp. 381–401.

4. P. C. G. da Costa. Bayesian semantics for the Semantic Web. Doctoral Dissertation, George
Mason University, Fairfax, VA, USA, 2005.

5. C. V. Damásio. The W4 Project, 2002. http://centria.di.fct.unl.pt/˜cd/
projectos/w4/index.htm.

96

6. Z. Ding and Y. Peng. A Probabilistic extension to ontology language OWL. In Proceedings
HICSS-2004.

7. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set program-
ming with description logics for the Semantic Web. In Proceedings KR-2004, pp. 141–151.

8. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics for descri-
ption logic programs in the Semantic Web. In Proc. RuleML-2004, LNCS 3323, pp. 81–97.

9. D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential. MIT Press, 2002.

10. A. Finzi and T. Lukasiewicz. Structure-based causes and explanations in the independent
choice logic. In Proceedings UAI-2003, pp. 225–232.

11. Y. Fukushige. Representing probabilistic knowledge in the Semantic Web. In Proceedings of
the W3C Workshop on Semantic Web for Life Sciences, Cambridge, MA, USA, 2004.

12. M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive databases.
New Generation Computing, 17:365–387, 1991.

13. R. Giugno and T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of SHOQ(D) for
probabilistic ontologies in the Semantic Web. In Proc. JELIA-2002, LNCS 2424, pp. 86–97.

14. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logics. In Proceedings WWW-2003, pp. 48–57.

15. J. Heinsohn. Probabilistic description logics. In Proceedings UAI-1994, pp. 311–318.
16. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satis-

fiability. In Proceedings ISWC-2003, LNCS 2870, pp. 17–29.
17. I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL Rules Language. In Proceed-

ings WWW-2004, pp. 723–731.
18. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:

The making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.
19. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics.

In Proceedings LPAR-1999, LNCS 1705, pp. 161–180.
20. M. Jaeger. Probabilistic reasoning in terminological logics. In Proc. KR-1994, pp. 305–316.
21. D. Koller, A. Levy, and A. Pfeffer. P-CLASSIC: A tractable probabilistic description logic.

In Proceedings AAAI-1997, pp. 390–397.
22. T. Lukasiewicz. Probabilistic description logic programs. In Proceedings ECSQARU-2005,

LNCS 3571, pp. 737–749.
23. H. Nottelmann and N. Fuhr. pDAML+OIL: A probabilistic extension to DAML+OIL based

on probabilistic Datalog. In Proceedings IPMU-2004.
24. M. Pool and J. Aikin. KEEPER and Protégé: An elicitation environment for Bayesian infer-

ence tools. In Proceedings of the Workshop on Protégé and Reasoning held at the 7th Inter-
national Protégé Conference, 2004.

25. D. Poole. The independent choice logic for modelling multiple agents under uncertainty.
Artificial Intelligence, 94:7–56, 1997.

26. U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intelligence
Research, 14:137–166, 2001.

27. U. Straccia. Towards a fuzzy description logic for the Semantic Web (preliminary report). In
Proceedings ESWC-2005, LNCS 3532, pp. 167–181.

28. U. Straccia. Uncertainty and description logic programs: A proposal for expressing rules and
uncertainty on top of ontologies. Technical Report ISTI-2004-TR, CNR Pisa, 2004.

29. A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

30. W3C. OWL web ontology language overview, 2004. W3C Recommendation (10 February
2004). Available at www.w3.org/TR/2004/REC-owl-features-20040210/.

97

Modeling Degrees of Conceptual Overlap in Semantic Web Ontologies
Markus Holi and Eero Hyvönen

Helsinki University of Technology, Media Technology,
Helsinki Institute for Information Technology (HIIT), and University of Helsinki

P.O. Box 5500, FI-02015 TKK, FINLAND
http://www.cs.helsinki.fi/group/seco/
email: firstname.lastname@tkk.fi

Abstract
Semantic Web ontologies are based on crisp logic
and do not provide well-defi ned means for express-
ing uncertainty. We present a new probabilistic
method to approach the problem. In our method,
degrees of subsumption, i.e., overlap between con-
cepts can be modeled and computed effi ciently us-
ing Bayesian networks based on RDF(S) ontolo-
gies.

1 Introduction
Ontologies are based on crisp logic. In the real world, how-
ever, relations between entities often include subtleties that
are diffi cult to express in crisp ontologies. RDFS[rdf, 2004]
and OWL [owl, 2003] do not provide standard ways to ex-
press partial overlap and degrees of overlap in general.
This paper presents a method for modeling degrees of over-

lap between concepts. In the following we fi rst introduce the
principles of our method. Then a notation that enables the
representation of degrees of overlap between concepts in an
ontology is presented after which a method for doing infer-
ences based on the notation will be described. For a more
detailed presentation of the method see [Holi, 2004].

2 Modeling Uncertainty in Ontologies
Figure 1 illustrates various countries and areas in the world.
There are important properties in the fi gure, that are not mod-
eled in a crisp partonomy. For example, EU is a bigger part
of Europe than Lapland, and Russia partly overlaps Europe
and Asia.
Our method enables the representation of overlap in con-

cept hierarchies, including class hierarchies and partonomies,
and the computation of overlap between a selected concept
and every other, i.e. referred concept in the hierarchy. The
overlap value is defi ned as follows:

Overlap = |Selected∩Referred|
|Referred| ∈ [0, 1].

Intuitively, the overlap value has the following meaning:
The value is 0 for disjoint concepts (e.g., Lapland and Asia)
and 1, if the referred concept is subsumed by the selected
one. High values lesser than one imply, that the meaning of
the selected concept approaches the meaning of the referred
one.

World 37*23 = 851
Europe 15*23 = 345
Asia 18*23 = 414
EU 8*21 = 168
Sweden 4*9 = 36
Finland 4*9 = 36

Sweden

Finland

EU

Europe Asia

World

Norway 4*9 = 36
Lapland 13*2 = 26

Russia

Russia 18*19 = 342 Russia&Europe = 57 Russia&Asia = 285

Lapland&(Finland | Sweden | Norway) = 8
Lapland&Russia = 2 Lapland&EU = 16

Lapland

Norway

Figure 1: A Venn diagram illustrating countries, areas, their
overlap, and size in the world.

3 Representing Overlap
A concept hierarchy can be viewed as a set of sets and can be
represented by a Venn diagram.
If A andB are sets, thenA must be in one of the following

relationships to B.
1. A is a subset of B, i.e. A ⊆ B.
2. A partially overlaps B, i.e. ∃x, y : (x ∈ A ∧ x ∈ B) ∧

(y ∈ A ∧ y %∈ B).
3. A is disjoint from B, i.e. A ∩ B = ∅.
Based on these relations, we have developed a simple

graph notation for representing overlap in a concept hierar-
chy as an acyclic overlap graph. Here concepts are nodes,
and a number called mass is attached to each node. The mass
of concept A is a measure of the size of the set correspond-
ing to A, i.e. m(A) = |s(A)|, where s(A) is the set corre-
sponding to A. A solid directed arc from concept A to B
denotes crisp subsumption s(A) ⊆ s(B), a dashed arrow
denotes disjointness s(A) ∩ s(B) = ∅, and a dotted arrow
represents quantifi ed partial subsumption between concepts,
which means that the concepts partially overlap in the Venn

98

diagram. The amount of overlap is represented by the partial
overlap value p = |s(A)∩s(B)|

|s(A)| .
In addition to the quantities attached to the dotted arrows,

also the other arrow types have implicit overlap values. The
overlap value of a solid arc is 1 (crisp subsumption) and the
value of a dashed arc is 0 (disjointness). The quantities of the
arcs emerging from a concept must sum up to 1. This means
that either only one solid arc can emerge from a node or sev-
eral dotted arcs (partial overlap). In both cases, additional
dashed arcs can be used (disjointness). Intuitively, the outgo-
ing arcs constitute a quantifi ed partition of the concept. Thus,
the dotted arrows emerging from a concept must always point
to concepts that are mutually disjoint with each other.
Notice that if two concepts overlap, there must be a di-

rected (solid or dotted) path between them. If the path in-
cludes dotted arrows, then (possible) disjointness between the
concepts must be expressed explicitly using the disjointness
relation. If the directed path is solid, then the concepts neces-
sarily overlap.

4 Computing the Overlaps
Computing the overlap is easiest when there are only solid
arcs, i.e. complete subsumption relation between concepts. If
there is a directed solid path fromA (selected) toB (referred),
then overlap o = |s(A)∩s(B)|

|s(B)| = m(A)
m(B) . If there is a mixed

path then the computation is not as simple. To exploit the
simple case we transform the graph into a solid path structure
according to the following principle:
Transformation Principle 1 Let A be the direct partial sub-
concept of B with overlap value o. In the solid path structure
the partial subsumption is replaced by an additional middle
concept, that represents s(A) ∩ s(B). It is marked to be
the complete subconcept of both A and B, and its mass is
o · m(A).
If A is the selected concept and B is the referred one, then

the overlap value o can be interpreted as the conditional prob-
ability

P (B′ = true|A′ = true) =
|s(A) ∩ s(B)|

|s(B)|
= o, (1)

where s(A) and s(B) are the sets corresponding to the con-
ceptsA andB. A′ andB′ are boolean random variables such
that the value true means that the corresponding concept is a
match to the query, i.e, the concept in question is of interest
to the user.
Based on the above, we chose to use the solid path structure

as a Bayesian network topology. In the Bayesian network the
boolean random variable X ′ replaces the concept X of the
solid path structure. The effi cient evidence propagation al-
gorithms developed for Bayesian networks [Finin and Finin,
2001] to take care of the overlap computations.
The joint probability distribution of the Bayesian net-

work is defi ned by conditional probability tables (CPT)
P (A′|B′

1, B
′
2, . . . B

′
n) for nodes with parents B′

i, i = 1 . . . n,
and by prior marginal probabilities set for nodes without
parents. The CPT P (A′|B′

1, B
′
2, . . . B

′
n) for a node A′

can be constructed by enumerating the value combinations
(true/false) of the parents B′

i, i = 1 . . . n, and by assigning:

P (A′ = true|B′
1 = b1, . . . B

′
n = bn) =

∑

i∈{i:bi=true}

m(Bi)

m(A)
(2)

The value for the complementary case P (A′ =
false|B′

1 = b1, . . . B
′
n = bn) is obtained simply by sub-

tracting from 1.
By instantiating the nodes corresponding to the selected

concept and the concepts subsumed by it as evidence (their
values are set “true”), the propagation algorithm returns the
overlap values as posterior probabilities of nodes. The query
results can then be ranked according to these posterior prob-
abilities.

5 Discussion
Overlap graphs are simple and can be represented in RDF(S)
easily. Using the notation does not require knowledge of
probability theory. The concepts can be quantifi ed automati-
cally, based on data records annotated according to the ontol-
ogy, for example.
The problem of representing uncertainty in ontologies has

been tackled previously by using methods of fuzzy logic,
rough sets [Stuckenschmidt and Visser, 2000] and Bayesian
networks [Ding and Peng, 2004; Gu and H.K. Pung, 2004].

Acknowledgments
Our research was funded mainly by the National Technology
Agency Tekes.

References
[Ding and Peng, 2004] Z. Ding and Y. Peng. A probabilistic
extension to ontology language owl. In Proceedings of
the Hawai’i Internationa Conference on System Sciences,
2004.

[Finin and Finin, 2001] F. V. Finin and F. B. Finin. Bayesian
Networks and Decision Graphs. Springer-Verlag, 2001.

[Gu and H.K. Pung, 2004] T. Gu and D.Q. Zhang
H.K. Pung. A bayesian approach for dealing with
uncertain contexts. In Advances in Pervasive Computing,
2004.

[Holi, 2004] M. Holi. Modeling uncertainty in semantic
web taxonomies, 2004. Master of Science Thesis. De-
partment of Computer Science, University of Helsinki,
http://ethesis.helsinki.fi /julkaisut/mat/tieto/pg/holi/.

[owl, 2003] OWL Web Ontology Language Guide, 2003.
http://www.w3.org/TR/2003/CR-owl-guide-20030818/.

[rdf, 2004] RDF Vocabulary Description Language 1.0:
RDF Schema, 2004. http://www.w3.org/TR/rdf-schema/.

[Stuckenschmidt and Visser, 2000] H. Stuckenschmidt and
U. Visser. Semantic translation based on approximate re-
classifi cation. In Proceedings of the ’Semantic Approxi-
mation, Granularity and Vagueness’ Workshop, 2000.

99

Abstract
This work derives and simulates two choice models
applying the weighted utility theory, a generaliza-
tion of the expected utility theory. It shows one set
of assumptions, which justify the practice of in-
cluding the mean and the variance of a risky alter-
native into a linear utility function of the choice
model. A Monte Carlo simulation provides empiri-
cal evidence on the robustness of the models.

1 Introduction
Allais paradox shows that our choices commonly violate the
axioms of von Neumann-Morgenstein expected utility the-
ory. But we still commonly apply the expected utility theory
when we model our choices. One possible remedy to this
discrepancy is to build a choice model that uses one gener-
alization of the expected utility theory, the weighted utility
theory.
 This paper presents two binomial logit models, which
assume that the decision maker has weighed utility prefer-
ences. The models have been written into a context of a
transportation problem, but naturally they can be applied to
any choice between two risky alternatives.
 Axiomatically weighted utility differs from expected util-
ity by a weaker version of the independence axiom.
Weighted utility was first axiomatized by Chew and Mac-
Crimmon, [1979]. Chew [1982] proved that weighted utility
behavior cannot be derived from expected utility by trans-
forming the risky variables. Further axiomatic work has
been continued by Chew [1983], Fishburn [1981, 1983] and
Nakamura [1984, 1985]. Fishburn [1988] contains an in-
formative presentation of the weighted utility theory.
 The descriptive strength of weighted utility has been
tested in empirical laboratory experiments [Chew and
Waller, 1986; Camerer 1989; Conlisk 1989]. I do not know
of any choice models where weighted utility is applied.

* The support of Yrjö Jahnson Foundation and NSF grants

DMS 9313013 and DMS 9208758 are gratefully acknowledged.

2 Utility Functionals of the Logit Models
Following the tradition of logit models I formulate a utility
function that is separable in attributes. The simplest utility
function has one sure attribute and one risky attribute. In a
transportation context these can be monetary cost of travel
and travel time, respectively. In the case of discrete distribu-
tion of the risky alternative, the utility functional is:

where p(ti) denotes the probability of possible travel time
outcome ti, w(ti) the weight the decision maker places on the
outcome ti, U(ti) the utility of the outcome ti, and c the sure
monetary cost.
 An exponential works well as the weight function.

 If ! = 0, the weight function gets a value one throughout
the domain and reduces the weighted utility expression to an
expected utility. If ! > 0, the traveler emphasizes the poten-
tial of longer travel times. Correspondingly, if ! < 0, the
traveler behaves as if he would consider the shorter travel
times as "more weighty" than what expected utility would
warrant.
 For the model with continuous distribution of the risky
attribute the assumptions are: t~N(µ,"2), U = -b1t, and w(t) =
exp(!t). With these assumptions the utility functional is:

This form has the welcome property that it simplifies to

Modeling the Non-Expected Choice: A Weighted Utility Logit∗

Pia Koskenoja
Tampere University of Technology

Institute of Transportation Engineering
Room FA 208, P O Box 541 (Korkeakoulunkatu 8), FI-33101 Tampere, Finland

pia.koskenoja@tut.fi

() () () ()
() () cb

twtp
tUtwtpbbV

i
m

mm

iii
210 −−=⋅ ! !

())exp(ii ttw α=

()
() ()

() () .

2
expexp

2
1

2
expexp

2
1

2

2

2

2

2

10 cb
dttt

dtttt
bbV −

""
#

$
%%
&

' −−⋅

""
#

$
%%
&

' −−⋅⋅
−=⋅

(

(

σ
µα

πσ

σ
µα

πσ

() () .2
2

10 cbbbV −+−=⋅ ασµ

100

This is a welcome find because it justifies the commonly
practiced ad hoc inclusion of the risky attribute’s variance as
a fully separate explanatory variable in addition to the mean
in the utility expression of an estimated choice model. On
the other hand, it demonstrates that this common practice is
not compatible with the expected utility theory. A demon-
stration of this property in a 3-outcome space is available
from the author by request.

2.1 Parameter restrictions
It is customary to require that a utility function exhibits risk
aversion and monotonicity.
 Risk aversion is defined to mean that the utility of the
expected outcome is preferred to the utility of a gamble.
Assuming two arbitrary outcomes, the requirement of risk
aversion simplifies to a requirement that the ratio of weight
functions of the outcomes cannot equal to one, that is, !
should not equal zero. This requirement reflects the fact that
this particular formulation of weighted utility reduces to
expected utility only in the case of risk neutrality.
 Monotonicity of utility function in outcomes generalizes
into a requirement that the utility functional exhibits first
order stochastic dominance (FSD). For the discrete model it
is possible to arbitrarily define the range of outcomes as [L1,
L2] and thus the range for V[{p(ti)}] as [-b1L2,-b1L1]. The
definitions lead to two conditions for FSD: ! < 1/(L2-L1)
and ! > 0. If the risky attribute has an infinite range of out-
comes, the decision maker violates monotonicity if she is
risk averse, that is, if her ! # 0.

3 Monte Carlo Simulations
The Monte Carlo simulations consisted of rounds of first
creating the true choices according to three models: a con-
tinuous risky attribute, a discrete risky attribute, and a sure
attribute, and later taking the created choice data as given
and estimating the three models on each data set.
 The weighted utility formulations worked well. In all the
simulation runs the continuous model specification gave
more consistent results than the discrete one, which should
be expected due to the simpler functional form. The true b-
parameters were more consistently retrieved in both specifi-
cations than !. When true value of ! was set to strongly
violate FSD, only the continuous model specification was
able to converge reliably and retrieve the correct values. But
when true ! was set to 0.15, which still moderately violated
FSD, the discrete model formulation converged each time
and the mean of the 50 parameter estimates (0.1864) was
within two standard deviations of the true value of 0.15.
When the true !-value was set to not violate FSD, the
weighted utility models retrieved the true parameters very
well. The same held when the true behavior was created by
mean value utility, that is to say the true ! had a value zero.
 When the true behavior was generated by weighted pref-
erences, but was estimated by mean value utility model, the
estimated parameters were consistently downward biased
towards a point where their proportions stay true. This dem-
onstration is something that should be taken into account in
the interpretations of models where the ratio of parameters

is assumed to not contain a risk premium for the unreliable
attribute, like in the value-of-time estimation. If the true
preferences driving the choices comply with weighted util-
ity, the parameters estimated from a mean value utility
model will produce estimates that include a risk premium.

4 Conclusions
The model simulations demonstrated that the weighted util-
ity logit models give reliable estimates in a wide range of
true weighted utility risk preferences. Especially the discrete
version of the model poses possibilities for situations where
the decision maker tends to succumb to Allais paradox and
bases his decisions on a small number of perceived possible
realizations of the risky alternative.

References
[Camerer, 1989] C.F. Camerer. An Experimental Test of

Several Generalized Utility Theories. Journal of Risk
and Uncertainty. 2:61-104, 1989.

[Chew, 1982] S.H.Chew. A Mixture set axiomatization of
weighted utility theory. Discussion Paper 82-4, College
of Business and Public Administration, University of
Arizona, Tuscon, 1982.

[Chew, 1983] S.H. Chew. A generalization of the quasilin-
ear mean with applications to the measurement of in-
come inequality and decision theory resolving the Allais
paradox. Econometrica, 51:1065-1092, 1983.

[Chew and MacCrimmon 1979] S.H. Chew and K.R. Mac-
Crimmon. Alpha-nu choice theory: a generalization of
expected choice theory. Working paper 669, Faculty of
Commerce and Business Administration, University of
British Columbia, Vancouver, Canada, 1979.

[Chew and Waller 1986] S.H. Chew and W.S. Waller. Em-
pirical Tests of Weighted Utility Theory. Journal of
Mathematical Psychology,30:55-72, 1986.

[Conlisk 1989] J. Conlisk. Three variants on the Allais Ex-
ample. American Economic Review,79:392-407, 1989.

[Fishburn 1981] Fishburn. An axiomatic characterization of
skew-symmetric bilinear functionals, with applications
to utility theory. Economic Letters,8:311-313, 1981.

[Fishburn 1983] Fishburn. Transitive measurable utility.
Journal of Economic Theory 31:293-317, 1983.

[Fishburn 1988] Fishburn. Nonlinear Preference and Utility
Theory. Johns Hopkins University Press, Baltimore,
1988.

[Nakamura 1984] Y. Nakamura. Nonlinear measurable util-
ity analysis. Ph.D. dissertation, University of California,
Davis, 1984.

[Nakamura 1985] Y. Nakamura. Weighted linear utility.
Preprint. Department of Precision Engineering. Osaka
University, Osaka, Japan, 1985.

101

Ontology based analysis of experimental data

Andrea Splendiani
Institute Pasteur, Unité de Biologie Systémique, rue du dr. Roux 25-28, 75015 Paris, France
University of Milano-Bicocca, DISCO, via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

andrea.splendiani@unimib.it

Abstract
We address the problem of linking observations
from reality to a semantic web based knowledge
base. Concepts in the biological domain are in-
creasingly being formalized through ontologies,
with an increasing adoption of semantic web stan-
dards. At the same time biology is becoming a data-
centric science, since the increasing availability of
high throughput technologies yields a humanly in-
tractable amount of data describing the behavior
of biological systems at the molecular level. This
creates the need for automated support to interpret
biological data given the pre-existing knowledge
about the biological systems under study. While
this is currently addressed through the analysis of
attributes associated to biological entities, the avail-
ability of ontologies that represent biological sys-
tems makes it possible to improve the extent to
which pre-existing knowledge can be used. The se-
mantic web, in particular, provides a framework to
integrate and create a formalized biological knowl-
edge base. Linking ontological knowledge to ob-
served data is inherently approximate, because of
the quality of observations, the relation between
observed data and entities and the classification of
entities. We present an overall framework project
and its current development status.

1 Introduction
Scientific exploration constantly involves relating experimen-
tal evidence to existing knowledge. In the Life Science fields
existing knowledge is commonly encoded in a corpus of sci-
entific publications. This knowledge is used by scientists to
design and interpret experiments that in turn lead to new dis-
coveries. Traditionally this meant to relate a limited amount
of experimental evidence to pre-defined hypotheses.
Recently, the availability of high-throughput technologies,

such as DNA sequencing, mRNA and proteomic profiling is
challangingchallenging this existing paradigm. Such tech-
nologies allow the observation of the behavior of biological
systems at the molecular level on a system-wide basis. This
means that a humanly intractable amount of data is available,
most of which does not relate to previous hypotheses. Thus

relating such a large scale experimental evidence to the exist-
ing biological knowledge is essential in order to understand
the phenomenon under study.
Given the vast amount of data generated by high through-

put technologies, this necessitates automated support.
At the same time there is an increasing availability of struc-

tured biological information, in the semantic web framework
in particular. The Gene Ontology[Ashburner et al., 2000] ini-
tiative provides ontologies describing functions of gene prod-
ucts. It currently encompasses more than 17000 terms linked
by relations of inheritance and containment and it is avail-
able in RDF. MGED-ontology1 provides an ontology to de-
scribe attributes relevant to mRNA experiments in OWL, and
the BioPAX[The BioPAX workgroup] initiative is defining a
common standard to represent biological pathways and inter-
action networks in OWL. This last initiative is of particular
interest since it provides a common ontological framework
for the unification of different resources. The availability
of such resources makes it possible to partially automatize
the association between experimental evidence and existing
knowledge to effectively lead data analysis.

2 Ontologies and data analysis
Focusing on ontologies that describe the behavior of biologi-
cal systems at the molecular level, there is a range of ontolo-
gies that vary in scope and depth. While available knowledge
of some biological systems is enough to build causal mod-
els, in general such knowledge is limited and most of ontolo-
gies have a low ontological commitment. When dealing with
system-wide observations, this second class of ontologies is
most relevant.
For instance, in the case of mRNA profiling, the behavior

of thousands of genes in a cell in response to some sort of
stimuli is observed. For each gene, measures of its activity are
provided. These data are usually related to Gene Ontology to
derive a functional characterization of the cell response.
Associations of genes to specific classes in Gene Ontology

are determined based on available knowledge. By its seman-
tics, association of a gene to a class implies association of a
gene to its super classes too. Thus a gene is annotated with a
set of classes that act as attributes describing specific biolog-
ical functions.

1www.mged.org

102

It is common practice to define a subset of relevant genes
from experimental data and to study the incidence of these
attributes derived from Gene Ontology through statistical
tests[Beissbarth et al., 2004; Maere et al., 2005].
Sometimes relations of inheritance and independence are

used to measure “conceptual distances” among genes[Joslyin
et al., 2004].

3 Uncertainty
Uncertainty plays a key role in the task of associating experi-
mental evidence to ontological knowledge, at several levels.
Uncertainty in the definition and relations between classes

plays a limited role. There is not a specific support for uncer-
tainty in OWL, and the definition of ontologies is an ongoing
task where crisp definitions are valuable.
Association between instances and classes is one point

where uncertainty plays a critical role. Almost every on-
tology encodes a confidence in the association through “ev-
idence codes” (describing the kind of supporting evidence)
and eventually a p-value or citations of relevant scientific lit-
erature. See [Karp et al., 2004] for an example of an ontology
for experimental evidence.
Association between data and ontologies is then inherently

uncertain. Uncertainty may come not only from the experi-
mental setup and measurements, but also from the biological
source of variability, and from misconceptions or omissions
in the available knowledge.

4 Our project
The way experimental data are associated to existing ontolo-
gies now does not take into account all the information en-
coded in ontologies and does not provide a way to reason over
related uncertainty. We plan to overcome these limitations by
providing a framework for approximate reasoning based in
ontologies.
In particular, we focus on OWL ontologies describing bi-

ological pathways and on mRNA data. Given an ontology
representing a collection of pathways and related concepts
(including evidence support), and a set of experimental data,
we define a new ontology as the union of the two, represent-
ing observed evidence and the previous knowledge.
Thus we plan to use the structure of previous knowledge to

compute plausibility of concepts being pertinent to observed
conditions. This can be done through a rule based approach,
where inherent structure of pathways ontologies would en-
sure convergence of plausibility distributions.

5 Current development
We have developed an infrastructure where ontologies
can be merged and represented. This is based on the
Cytoscape[Shannon et al., 2003] software for molecular in-
teraction analysis which is used as a link to experimental data
and an interactive visualizer for RDF ontologies. Rule sys-
tems for unifying the ontologies and graph transformations to
represent views of ontologies are also provided.
Based on this, we plan to provide a Bayesian network along

with the ontology, or possible derivation of that, and to up-

date the plausibility of nodes associated to concepts given ev-
idence encoded in roots nodes. This updates involves consid-
ering both the experimental evidence, and uncertainty assess-
ment related to it.

6 Conclusion
The Life Science community is one of the early adopters
of semantic web technologies. The need to represent and
integrate a vast amount of different information is pushing
the development of this technology. The analysis of high-
throughput data poses naturally the need of approximate rea-
soning and uncertainty representation.

References
[Ashburner et al., 2000] Ashburner M, et al. Gene on-

tology: tool for the unification
of biology. The Gene Ontology
Consortium. Nat Genetics 2000
May;25(1):25-9

[The BioPAX workgroup] The BioPAX workgroup.
BioPAX: Biological Pathways
Exchange. www.biopax.org

[Beissbarth et al., 2004] Beissbarth T, Speed TP. GOstat:
find statistically overrepresented
Gene Ontologies within a group
of genes. Bioinformatics 2004
Jun12;20(9):1464-5

[Maere et al., 2005] Maere S, Heymans K, Kuiper
M. BiNGO: a Cytoscape plugin
to assess overrepresentation of
Gene Ontology categories in bio-
logical networks. Bioinformatics
2005 Aug 21; 3448-3449

[Karp et al., 2004] Karp PD, Paley S, Krieger CJ,
Zhang P. An evidence ontol-
ogy for use in pathway/genome
databases. Pac Symp Biocomput.
2004; 190-201

[Joslyin et al., 2004] Joslyn CA, Mniszewski SM, Ful-
mer A, Heaton G. The gene on-
tology categorizer. Bioinformat-
ics 2004 Aug 4;20 Suppl 1:I169-
I177

[Shannon et al., 2003] Shannon P, Markiel A, Ozier
O, Baliga NS, Wang JT, Ram-
age D, Amin N, Schwikowski
B, Ideker Y. Cytoscape: a soft-
ware environment for integrated
models of biomolecular interac-
tion networks. Genome Res. 2003
Nov;13(11):2498-504

103

Position Paper: Paraconsistent Reasoning for the Semantic Web
S. Schaffert1, F. Bry2, P. Besnard3, H. Decker4, S. Decker5, C. Enguix5, A. Herzig3

1 Salzburg Research Forschungsgesellschaft, Salzburg, Austria
2 Ludwig-Maximilians-Universität München, Germany

3 Institut de Recherche en Informatique de Toulouse, France
4 Instituto Tecnológico de Informática, Valencia, Spain
5 Digital Enterprise Research Institute, Galway, Ireland

Abstract
Due to the Semantic Web’s decentralised and dis-
tributed management, contradictory information is
and will remain frequent. However, classical rea-
soning systems fail to work properly in the pres-
ence of inconsistencies, because they implicitly or
explicitly assume the ex contradictione quod li-
bet (ECQL) principle stating that anything follows
from contradictory premises. Paraconsistent rea-
soning challenges this ECQL principle.
Stressing practical cases of reasoning on the Web,
this position paper first argues that paraconsistent
reasoning is likely to become a key issue for suc-
cessful deployment of the Semantic Web. Then, it
briefly introduces the main approaches to date to
paraconsistent reasoning.

1 Introduction
Classical and other logic, upon which modern computing is
based, requires the complete absence of contradictions. With
the classical ex contradictione quod libet (ECQL) rule (or
principle of explosion), everything, and thus nothing useful at
all, can be inferred from a contradiction. For instance, from
a contradiction in a train information system can be derived
that the moon is made of green cheese. Nonetheless, incon-
sistencies play an important role in practice (Section 2).
Paraconsistent logics are a rather novel direction in math-

ematical logics that challenge the ECQL principle in order
to allow “reasonable” reasoning in the presence of inconsis-
tencies without introducing more problems than are already
present in the data. Several different approaches to paracon-
sistent logics exist and are briefly outlined in Section 3.
We conclude this article with a perspective for paraconsis-

tent reasoning on the Semantic Web (Section 4).

2 Cases for Paraconsistent Reasoning
Distributed Information Systems
In distributed information systems, like the online informa-
tion systems of European railways companies, contradic-
tory information is frequent. For example, the German rail-
way company might give different arrival times for trains to
Paris than the French railway company, because construction

works on the track in France have not been entered into the
German system. Human beings can easily cope with such
inconsistencies in various ways (e.g. identify which informa-
tion is more likely or “don’t care”). Reasoning systems on the
(Semantic) Web must equally be able to derive useful conclu-
sions from the “inconsistency-free” premises.
Coping with Change
Belief change is the field of artificial intelligence devoted to
the rational change of belief in the light of new evidence. E.g.,
a train timetable might be updated with new train connec-
tions that have to be taken into account in further reasoning.
Likewise, train connections might have been removed mak-
ing previously drawn conclusions invalid.
In practice, changes like updates to an information system

may cause inconsistencies that cannot be discarded. Standard
methods for belief change are based on classical logic and
hence accept the ECQL principle. As a consequence, they
cannot be used for deriving useful conclusions in presence of
updates causing contradictions.
Inconsistencies Welcome!
In some situations, inconsistencies are even desirable. This
is, e.g., the case when contradictory viewpoints are present
and need to be reconciled. For instance, two ontologies de-
scribing appartment rental offers and appartment sale offers
might well inconsistently describe preferences and prices for
city areas. This obviously should neither prevent considering
both ontologies nor deriving meaningful conclusions in the
same reasoning context (like helping in taking a decision for
buying or renting an appartment). Obviously, human beings
are capable of doing so without applying the ECQL principle,
and so should automated reasoning systems on the Web.
Another example is policy reasoning. At the beginning of a

negotiation towards selling/buying aWeb service, the policies
of the buyer and seller might be contradictory. Instead of ap-
plying the ECQL principle, a reasoning system should strive
to overcome the inconsistencies, i.e. find a way to pass a con-
tract acceptable for both the service buyer and seller without
requiring them to change their policies.
“Dialetheias”
In practice, there are cases where contradictions are inherent
to the problem, so-called “dialetheias”. Since such cases arise
in knowledge modelling, they will also arise on the Seman-
tic Web. This is in particular the case with the well known

104

Liar’s Paradox where a sentence states its own falsity (“this
sentence is not true”).
On the SemanticWeb, dialetheias might easily arise though

reification, especially of RDF statements, and throughmodal-
ities – such as “A believes B” or “A does not believe what B
states” – that are needed e.g. for policy reasoning. Liar sen-
tences can also be indirect consequences of statements that
are themselves unproblematic, e.g. when combining knowl-
edge from different Web resources.

3 Approaches to Paraconsistent Reasoning
Most approaches to paraconsistent logic and reasoning allow
a formula F and its negation ¬F to hold in an interpreation
(or “model”). Major approaches of paraconsistent logics and
reasoning are stressed below:
Relevant Logics
Relevant logics have been first proposed by Anderson and
Belnap. Semantics for such logics based on “different
worlds” have been developed by Routley and Meyer. Con-
junction and disjunction behave in the usual way, but each
world w has an associated world w∗ such that ¬A is true in
w iff A is false in w∗ (not in w). As a consequence, if A is
true in w and false in w∗, then A∧¬A is true in w. Note that
requiring w∗

= w yields the standard classical logic.
Many-Valued Systems
A multi-valued logic is a logic with more than two truth val-
ues. The formulas that hold in a multi-valued interpretations
are those which have a specific truth-value, the so-called des-
ignated formulas. A multi-valued logic is paraconsistent if it
allows both a formula and its negation to be designated.
The simplest approach uses three truth values: true and

false, like in classical logic, and a third truth-value denoting
“both truth and false” such that if a formual F has this third
truth-value in an interpreation, then so does also ¬F . Con-
sidering the real numbers between 0 and 1 instead of discrete
values results in a paraconsistent fuzzy logic.
Non-Adjunctive Systems
A non-adjunctive logic is a logic in which one cannot con-
clude A from A ∧B. The first non-adjunctive logic, and also
the first paraconsistent logic, ever proposed is the discussive
(or discursive) logic of Jaskowski. In dicussive logic, sev-
eral contributors state “opinions”. Each opinion is consistent
in itself but might be inconsistent with another opinion. A
modal logic (S5) is used to define interpretations: a world
corresponds to a contributor, and in it, all the contributor’s
sentences are true. Thus, A ∧ ¬A can hold in an interpreta-
tion consisting of several worlds, but not in a single world.
Non-Truth-Functional Logics
Non-truth functional logics have been introduced by da
Costa. Their idea is to make negation “non-truth-functional”
while keeping the other connectives like in standard, e.g. clas-
sical, logics. Seeing an interpretation as a function mapping
formulas to 0 (false) or 1 (true), a non-truth funtional logic
gives rise to defining the truth-value of ¬A independently of
that ofA (while keeping the usual functional dependencies of
the truth-value of A ∧ B, A ∨ B, A ⇒ B, etc. to the truth
values of A and B).

4 Paraconsistency on the Semantic Web
We believe that dealing with inconsistencies will play a cen-
tral role in the emergence of the Semantic Web. Paraconsis-
tent reasoning provides foundations and techniques that will
allow future applications to function properly in the presence
of inconsistencies. In particular, we think that paraconsistent
reasoning will influence the following areas:

Paraconsistency in Ontology Reasoning
Ontology reasoning (e.g. instance checking) on the Seman-
tic Web is usually based on reasoning techniques, e.g. the
tableaux calculus, developed for description logics. There-
fore, a first step towards an “inconsistency-aware” Seman-
tic Web will be to adapt existing reasoning algorithms using
techniques from paraconsistent reasoning.
Paraconsistency in Query Languages
Querying data plays a very important role on the Semantic
Web, as indicated by the multitude of existing Semantic Web
query languages. Building upon ontology reasoning, Seman-
tic Web query languages will likely need to be adapted so as
to work in the presence of inconsistencies.

Paraconsistency and Trust
In a distributed environment like the Semantic Web, where
anyone can author content, trust is a key issue. Conflicts with
classical logic are apparent: for example, different sources
might make conflicting assertions about the trustworthiness
of a site, and users might be interested in more fine-grained
levels of trust besides the binary “trusted” or “not trusted”.

References
[1] N.D. Belnap. A Useful Four-valued Logic: How a com-

puter should think. In A.R. Anderson, N.D. Belnap, and
J.M. Dunn, editors, Entailment: The Logic of Relevance
and Necessity. Princeton University Press, 1992.

[2] P. Besnard and A. Hunter, editors. Handbook of Dea-
sible Reasoning and Uncertainty Management Systems,
volume 2. Kluwer Academic Publishers, 1998.

[3] François Bry. An Almost Classical Logic for Logic Pro-
gramming and NonmonotonicReasoning. In Paraconsis-
tent Computational Logic 2002, 2002.

[4] N.C.A. da Costa. On the Theory of Inconsistent Formal
Systems. Notre Dame Journal of Formal Logic, 15(4),
1974.

[5] J.M. Dunn and G. Restall. Relevance Logic. In D. Gab-
bay and F. Guenthner, editors, Handbook of Philosophi-
cal Logic, volume 6. Kluwer Academic Publishers, 2nd
edition, 2002.

[6] S. Jaskowski. Propositional Calculus for Contradictory
Deductive Systems. In Studia Logica, volume 24. 2001.

[7] G. Priest. Paraconsistent Belief Revision. In Theoria,
volume 67. 2001.

[8] G. Priest. Paraconsistent Logic. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic,
volume 6. Kluwer Academic Publishers, 2nd edition,
2002.

105

Representing Probabilistic Relations in RDF

Yoshio Fukushige
Network Development Center

Matsushita Electric Industrial Co., Ltd.
4-5-15 Higashi-shinagawa, Shinagawa-ku, Tokyo 140-8632, Japan

fukushige.yoshio@jp.panasonic.com

Abstract
Probabilistic inference will be of special impor-
tance when one needs to know how much we can
say with what all we know given new observa-
tions. Bayesian Network is a graphical probabilis-
tic model with which one can represent probabilis-
tic relations intuitively and several effective algo-
rithms for inference are developed. This paper re-
ports a now ongoing work in its design stage which
provides a vocabulary for representing probabilistic
knowledge in a RDF graph which is to be mapped
to a Bayesian Network to do inference on it.

1 Introduction
In the real world, especially in the scientific fields like Life
Science, or in applications like contents classification and rec-
ommendation, it is often the case that relationship between
resources holds probabilistically, or we can make statements
only with uncertainty. Such relationships can be well de-
scribed with probabilistic model. And probabilistic inference
will be of special importance when one needs to know how
much we can say with what we know incompletely.
In this position paper, I report my ongoing work which pro-

vides a vocabulary for representing probabilistic knowledge
in a RDF graph. I introduce Bayesian Networks and list the
requirements for the representing language and candidate vo-
cabulary.

2 Bayesian Network
A Bayesian Network(BN) (Pearl 88) [1] is a graphical model
to represent probabilistic relations. It is a directed acyclic
graph (DAG), representing probabilistic dependencies among
a set of propositions. A node represents a set of exhaustive
and exclusive set of propositions (called ’variable’ or ’par-
tition’). A link represents a direct dependency between the
variables. Each node is accompanied with a conditional prob-
ability table (CPT) that represents the probabilistic relation-
ship between the variables. The posterior probability distribu-
tions (”beliefs”)for each variable could be calculated by prop-
agating beliefs.
Figure 1 shows an example illustration of a BN (CPTs are

not shown). It has 5 nodes and 5 links connecting them.
Advantages of employing BN are among others:

Figure 1: example Bayesian Network

• the relations are expressed by a graph, which is a famil-
iar notion in the Semantic Web, and thus intuitive and
easy to understand

• effective calculation algorithms (including simulation
methods) have been developed

3 Requirements for the representation
language

The aim of this work is not to just represent Bayesian net-
works in the Semantic Web, but to get a language (or exten-
sion vocabulary) which can describe probabilistic relations in
a way that is Semantic Web compatible and easy to map to
a BN. It is to put together the distributed information in the
Semantic Web, and do probabilistic inference in the BN.
The components of a BN are nodes and links and CPT’s

attached to the nodes. A node represents a set of exhaustive
and mutually exclusive propositions (called partition).
The representation language should be able to express:

• a partition, i.e. a set of exhaustive and exclusive propo-
sitions

• propositions in such a way that they are distinguished
from ground facts

• a probability with which a proposition holds
with/without certain conditions

4 Vocabulary for RDF representation
RDF is a W3C standard as one of the fundamental building
blocks of the Semantic Web. By representing probabilistic

106

!"#$%&'$(

)(*+$%,-.'$/,+(

0(1+$,2,3/4#(&+-(5%,"&"/2/#$/'(6,-42#(

7$&$/#$/'&2(84&#,+/+3(9(!(:,.+-&$/,+(;,%(74<&+$/'(=4"(84&#,+/+3(

7>&#>/(?&+$(!!!!(A&+342,#(6&<&#(

!

:/3.%4()B(1+$,2,3/4#(A/#CDCA/#(E&F4#/&+(G4$H,%I#(
(

108

J(!(KF"%/-(84&#,+/+3(6,-42(

! L4-.'$/A4(84&#,+/+3

! !"-.'$/A4(84&#,+/+3

! 6,+,$,+/'(%4&#,+/+3M(+,+C<,+,$,+/'(%4&#,+/+3(&+-(
-4;&.2$(A&2.4#

(

N(O,+'2.#/,+((

P(!'I+,H24-3<4+$#(

Q(84;4%4+'4#(

!

109

