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Is It Worth a Hoot? Qualms about OWL for Uncertainty Reasoning

Mike Pool', Francis Fung?®, Stephen Cannon', Jeffrey Aikin'

! Information Extraction and Transport, Inc.
1911 N. Fort Myer Dr, Suite 600, Arlington, VA 22209
{mpool, scannon, jaikin}@iet.com
2 Information Extraction and Transport, Inc.
1600 SW Western Blvd, Suite 300, Corvallis, OR 97333
{fung@iet.com}

Abstract. Information Extraction and Transport, Inc. (IET) is developing the Knowledge Elicitation
Environment for Probabilistic Event and Entity Relation (KEEPER) system, a tool for eliciting, storing,
updating and implementing probabilistic relational models (PRMs)[1,8,16]. The KEEPER elicitation
component implements a single ontology for the purposes of constraining and guiding elicitation and
providing the semantic bedrock for the reintegration of diverse knowledge sources for reasoning and
learning. We have used an extension of the Web Ontology Language (OWL) to implement the
ontology and the tools for PRM representation, and we describe the main features of that extension in
this paper. This paper offers an informal characterization of OWL_QM, an extension of OWL that
supports the representation of PRMs. It is intended to motivate discussion as to whether OWL is an
appropriate foundation for addressing the challenge of handling uncertainty on the Semantic Web.

1 Introduction

IET’s KEEPER system is designed to facilitate probabilistic knowledge elicitation from subject matter
experts (SMEs) in an environment that maximizes the integration and updating of that knowledge. This
process has involved finding an ontology based elicitation environment that also facilitates learning over
disparate data.

An established technology for performing reasoning under uncertainty is the formalism of Bayesian
networks[14](BNs). There are existing standards for representing BNs and work has been done to extend
semantic web languages for purpose of representing BNs, see [2] and [15]. However, BNs are not, in
themselves, adequate to enable reasoning systems because BNs embody a “flat” representation language
where all domain variables must be represented as nodes in a graph without allowing any abstraction.
Within a BN, the fact that one node represents a relation between others is lost, i.e., it cannot be directly
recovered from the information contained only in the BN model. Since BN variables do not fully capture
semantics, it is difficult to maintain generality and enforce shared semantics across SMEs.

A more expressive alternative to BNs is the implementation of type-level probabilistic relational
models (PRMs) that we discuss below. Upon instantiation, PRMs encode a Bayesian network and
probabilistic reasoning tools can be used to reason about properties of the objects instantiated. Thus a PRM
can be viewed as an augmentation of an ontological description of a set of entities that not only describes
the taxonomic hierarchies and the relationships between entities, but also the probabilistic relationships
among the values of various attributes of entities. See [3] and [16]. We discuss the nature of IET’s
implementation of PRMs in OWL_QM and the motivation for implementing them in OWL. We note that
the OWL extensions required to achieve this relatively minimal extension are quite extensive and briefly
discuss whether this argues against the use of OWL as an appropriate foundation for uncertainty reasoning.

2 Probabilistic Relational Models

IET’s modeling language, Quiddity*Modeler (QM), is a representation language for creating a version of
Probabilistic Relation Models (PRMs) that can be implemented with IET’s reasoning tools. A PRM is
based on a relational schema which consists of a set X of n classes {Xj, X, ...X,}. For each X; € X there



is a set of attributes, denoted by A(X;), and for each A € A(X), there is a set of possible values of A,
denoted by V(X;.A). For example, in PRMs for reasoning about vehicle, there be a Vehicle class and an
attribute associated with it may be color. That attribute may be able to take on some set of values each
denoting different colors. Also associated with each X; € X is a set of reference slots R(X,) that relates X;
to another class X; (where j may equal i) indicating how instances of different classes may be related to
each other. A range class is associated with each element Re R(Xi). For example, the Vehicle class may
have a reference slot owner with a range Person thereby linking instances of Vehicle to instances of
Person when the schema and PRM are instantiated. A reference slot chain can be created by composing a
set of reference slots into a list, e.g., 1,15, ..., I,. Attributes of objects defined in terms of their relation to
another object can be referenced with a slot chain, SC, as follows: X;.SC.A where Xi is a class, SC is a slot
chain in which the first element has the domain X; and A is an attribute of the class that is in the range of
the final element of SC. So, for example, suppose it’s useful to reference the sales tax rate of state in
which car owners reside in a model about car sales. This would be done as follows:
‘Car.owner.location.taxRate’ where ‘owner.location’ is a slot chain linking the Vehicle class to the
Person class (owner) and the Person class to the GeographicLocation class (location).

Given a PRM, we can specify a set of instances of the classes and the relations between them in terms of
the relational schema. Some attributes for the instances can be assigned values (for instance,
vehicle1.location = Virginia, where Virginia would be an instance of GeographicLocation). Other
attributes are uncertain, and part of the PRM definition is a specification of the parents of a given attribute,
and a specification for how to construct a conditional probability distribution for an attribute of an instance,
which depends on the values for its parent attributes. In this way, a set of instances of a PRM give rise to a
Bayesian network that encodes the probabilistic dependencies among the attributes of the instances.

QM implements PRMs and is based loosely on frames [10], a popular knowledge representation approach,
and is augmented with various methods to construct structural hypotheses. The fundamental modeling unit
is the frame. A frame defines general properties that hold for a class of objects, called frame instances;
frames are comparable to OWL classes and are used to represent the classes in a relational schema. Frames
contain (or, one could also say, are associated with) slots that are used to specify attributes of an instance of
the frame the descriptive attributes of the relational schema. Each slot can have a number of facets defined
on it. Some of these facet names are reserved words, and their values define the probability model over
instances of frame definitions. QM supports frame inheritance, where subframes inherit all slots (and facets
defined on them) defined in parent frames. It supports a version of multiple inheritance, where a frame can
inherit from multiple parents, but each such parent must inherit from a different direct subframe of the top-
level Frame frame (see [5]).

In addition to frame (class) abstractions organized by an "is-a" hierarchy inherited from the frame
system, QM supports mechanisms to express uncertainties about the value of a variable, the reference to an
instance, the existence of an instance, and the type of an instance. QM allows for expressing domain
knowledge as fragments of Bayesian networks in a modular and compact way, facilitating reuse.

This represents a significant advance over traditional approaches to BN representation. There has
been a great deal of interest in extending the Bayesian network formalism to provide greater expressive
power (see [8,9,12,17]). IET’s frame-language representation overcomes some of the challenges
mentioned above, i.e., its semantics allow users to create type level probabilistic models that impose richer
semantics and distinguish different objects that hold different properties in the context of a single BN.

3 Why OWL?

While IET has tools in place that allow for the creation of PRMs, the KEEPER tool required an
implementation to elicit PRMs, expressed within some uniform language, from SMEs. Our central
assumption is that an ontology-based approach is extremely useful for addressing some of the elicitation
challenges. Using a fixed ontology allows us to guide and constrain the elicitation; its implementation
allows SMEs to use variables that are clearly defined in a language sufficiently expressive to capture
intended meaning and facilitate interoperability between the knowledge representation of different users.
For more discussion of the importance of an ontology in a knowledge representation environment requiring
elicitation, learning from diverse sources and integration of heterogeneous sources, see [6]. Given the



central importance of an ontology in our reasoning system, it appeared to make sense to utilize OWL for
the following reasons:
a) On the face of it there appeared to be a relatively simple mapping from QM’s frame
language to OWL’s class-slot description logic
b) Many tools exist for editing and reasoning with knowledge developed in OWL. The Protégé
ontology editor has been a key resource in developing the KEEPER tool. We have also used
the Jena reasoning and parsing tools quite extensively.
¢) The semantic web is a key potential source of information for the purposes of reasoning and
learning. If our models are to be able to use that information they must be developed in an
amenable knowledge representation framework. It gives us ready access to the many
ontologies that have already been developed in OWL.
d)  The semantic web users are potential consumers of tools and knowledge that allows them to
deal with the uncertainty inherent in the web.

4 Related Work

Several efforts have been made to extend OWL and/or general description logics for the purposes of
representing probabilistic information. We mention some of the more closely related efforts here. First,
Ding and Peng [15] have proposed an extension to OWL for representing particular Bayesian networks.
This effort provides a means of translating an ontology implementing the set constructors of OWL into a
Bayesian network and concerns itself explicitly with set or class memberships rather than relationships
between attributes. In this sense, it is a more natural extension to OWL, i.e., insofar as the main point of
implementing a description logic is to reason simply about class membership. The work of Koller et al [7]
in developing P-Classic is similar, i.e., it provides a way to encode the classifiers in terms of a probabilistic
extension.

Paulo Costa has developed a very impressive extension to OWL to represent the full MEBN-logic [8] in
the OWL framework. The extensions that Costa’s work provides will, presumably, subsume the extension
provided here but we have continued to maintain our approach as it requires a smaller extension, less
parsing and reasoning support, and is more directly translatable into QM.

Our effort is analogous to the Semantic Web Rule Language (SWRL), [4] proposed extension to OWL,
i.e., we are attempting to go beyond a mere description logic; we are not merely looking for classifier tools
that will handle uncertainty. In that sense we add our voices to those who have not found the DL focus in
semantic web reasoning to be appropriate or adequate. However, we are also willing to settle for less than
full blown first-order expressiveness in our language. So, in some sense our examination is meant to
determine whether or not OWL is useful for even a modest probabilistic extension as the ability to
represent PRMs seems to be a fairly reasonable requirement for any language that is to be implemented for
handling uncertainty on the web.

5 OWL Implementation of PRM Constructs

In this section we discuss our extension to OWL, OWL_QM, for eliciting and representing PRMs. While
QM is the target language in our example, the approach and concomitant challenges are applicable to
representing PRMs in general.

5.1 Representing Quiddity Facets

PRMs implemented in QM focus on the representation of causal links between properties of objects.
Suppose that one wants to model the relation between a car’s monetary value and the mileage (odometer
reading) and show the probability distributions for these values as well as the causal links. Assume that
one of the classes in our relational schema is Car and that monetaryValue and mileage are elements of
A(Car). To indicate that there is a causal relation between a car’s value and its gas mileage it is necessary
specify the causal links between monetaryValue and mileage, probability distributions over the values of



each attribute, and other metaproperties in terms of these properties. These properties of properties, or
more correctly, properties of associations between properties and classes, are called ‘facets’ in QM.

Our focus in extending OWL to include QM PRMs was the creation of a means to introduce these
facets. Since these facets are associated with properties, the natural inclination is to attempt to define these
simply as properties of properties. One might assume that the creation of facets would simply involve
defining “metaproperties” that had rdf:Property as their domains and could be used to relate probability
distributions and the likes to these properties. However, this is not feasible in OWL. A central difference
between QM, (and most frame languages [10]), and OWL is the fact that rdfs:domain, the property linking
a slot to a class, is a global restriction, i.e., it tightly binds the property to a particular class (see [11] and
[13]). This means that any property specified on a property P is, in effect, necessarily tied to the class, C,
such that (P domain C). So, any metaproperty defined on P will be linked to C as well.

This impacts efforts to translate from OWL to QM and efforts to embed notions central to QM in an
OWL ontology. Such a restriction cannot be “overridden” by associating a property with different classes.
In QM, and other frame-slot languages, a slot is effectively defined relative to a particular class. So, when
one declares facets, like ‘distribution’, on a particular slot those facets are interpreted to be associated
relative to the frame at which the slot is defined. Consider the following frame and slot definition in QM:

frame Car isa Frame
slot mileage
facet domain = [good, poor]
facet distribution = [.5, .5]

It is interpreted to mean that the slot mileage, when attached to an instance of Car, can take on the value of
either 'good' or 'poor' and the distribution over those two values is [.5,.5]. But note that the Frame to which
it is related is central to the definition. As a convenience, QM allows for inheritance so that if a child
(subclass) of a frame does not reintroduce the same slot name, then the system infers that the definition of
the slot as stated for the parent frame is reapplicable to the child frame. However, it is also possible to
redefine the distribution declaration in a subclass, as illustrated in the frame definition below.
frame SportUtilityVehicle isa Car
slot mileage

facet domain = [good, poor]

facet distribution =[.3, .7]
This facet redefinition is less straightforward in OWL. If we define a distribution as a property of a
property, we cannot specify that the distribution applies for instances of some classes on which the base
property is defined but not others, i.e., it is less straightforward to override the defaults on a property if the
are defined as properties of a property rigidly tied to a class.

However, the ability to associate a distribution with a property (or slot) and class (frame) is essential
to an implementation of a probabilistic ontology extension. The distributions on value ranges for properties
of objects will typically change for classes at different levels of the class hierarchy. Since QM treats each
facet (e.g., distribution) as a property of a slot defined relative to some frame, our approach to capturing
this information in OWL is to reify the relationship between an OWL class and an OWL property and
define our distributions (and other QM facets) as properties of this reified relationship rather than as a
property of the OWL property itself. (See [18] for more discussion of reified relationships.) In other
words, unlike the situation in QM, in the OWL implementation not only must we represent the class and
the slot but we also represent, explicitly, the relationship between them, i.e., as an instance of another class
we have called ‘FrameSlotPairing’. It is this relationship between the slot and the frame, the
FrameSlotPairing, rather than the slot on its own, that becomes the “property holder” for our QM facets in
OWL QM.

<owl:Class rdf:ID="FrameSlotPairing">
<rdfs:subClassOf rdf:resource="#DIRECTED-BINARY-RELATION"/>
</owl:Class>

Thus, FrameSlotPairing is defined as a subclass of :DIRECTED-BINARY-RELATION, a concept
defined in the Protégé metalanguage for OWL. Each FrameSlotPairing instance represents the
relationship between one OWL class and one OWL property. The :FROM slot takes as its value the OWL
class involved in the relationship and the :TO slot takes as its value the property involved in the
relationship.



The framework for reasoning about the mileage for a car is implemented by creating
FrameSlotPairings as follows, where Car and SportUtilityVehicle are classes in the ontology and
mileage is a property:

<FrameSlotPairing rdf:ID="Car_mileage">
<protege:FROM rdf:resource="#Car"/>
<protege:TO rdf:resource="#mileage"/>
</FrameSlotPairing>
<FrameSlotPairing rdf:ID="SUV_mileage">
<protege:from rdf:resource="#SportUtilityVehicle"/>
<protege:to rdf:resource="#mileage"/>
</FrameSlotPairing>

Facets are then defined as properties having the domain ‘FrameSlotPairing’ and it becomes possible to
define distinct value ranges and distributions as we descend the hierarchy. The distinct distributions, and
even ranges, for an SUV’s mileage versus a generic car’s mileage would be defined as attributes of the two
distinct FrameSlIotPairings.

5.2 Representing Slot-Chains

A key advantage of PRMs is their ability to represent the way in which causal factors are related to the
entity being influenced by using slot chains as defined above, i.e., lists of reference slots that specify the
relations between instances of some class and the relationships by which they are related to the attributes of
another. Consider a model representing hereditary factors in baldness. A PRM with a Person class that
has, as properties, mother, father, and bald can be constructed. The mother and father properties both
have Person as their domain, and bald has a boolean range. The link between a person’s baldness state
and his/her maternal grandfather’s baldness is specified by utilizing the slot chain “mother.father.bald”,
i.e., the bald property of the Person instance in the father slot of the Person instance in the mother slot
of the Person instance in question. In QM this relationship is defined as follows:
frame Person
slot mother
facet domain = Person
slot father
facet domain = Person
slot baldness
facet domain = [false, true]
facet parents=[mother.father.baldness]

To implement this in OWL QM more representational tools than those used in QM are required. Just as
the pairings of slots and frames were reified to represent the association of a slot with a frame, a class
called 'Probabilistic Relationship' is reified to represent causal relations. These links are used to link the
relevant attributes, as well as to specify how the attributes themselves are linked.
<owl:Class rdf:ID="ProbabilisticRelationship">
<rdfs:subClassOf rdfiresource="#DIRECTED-BINARY-RELATION"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="parent PR">
<rdfs:range rdf:resource="#FrameSlotPairing"/>
<rdfs:domain rdf:resource="#ProbabilisticRelationship"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="child PR">
<rdfs:domain rdf:resource="#ProbabilisticRelationship"/>
<rdfs:range rdfiresource="#FrameSlotPairing"/>
</owl:ObjectProperty>

In the above case an instance of FrameSlotPairing is created, i.e., ‘Person_baldness’, in which the TO
value is ‘Person’ and the FROM value is ‘baldness’. However, the person whose baldness influences the
baldness of the person in the child_PR slot must also be specified. Accomplishing this requires a list of
slots showing the chain of relations linking the entity about which reasoning is being performed to the
entity or property having a causal influence on it.

<FrameSlotPairing rdf:ID="Person_baldness">



<protege:TO rdf:resource="#baldness"/>
<protege:FROM rdf:resource="#Person"/>
</FrameSlotPairing>
<owl:Class rdf:ID="SlotList">
<rdfs:subClassOf rdfiresource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#List"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="slotList PR">
<rdfs:range rdfiresource="SlotList"/>
<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema#string"
>slotList PR(PR, SL) means that SL is a list of slots (or properties or predicates) by which the
child FrameSlotPairing (FSP) in PR is related to the parent FSP in PR.</rdfs:comment>
<rdfs:domain rdf:resource="#ProbabilisticRelationship"/>
</owl:ObjectProperty>

Given these definitions and entity types, the following list is created to link a person’s baldness to the
baldness attribute of their maternal grandfather.

<SlotList rdf:ID="mother_father">
<rdf:first rdf:resource="#mother"/>
<rdf:rest>
<rdf:List>
<rdf:first rdf:resource="#father"/>
<rdfirest rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#nil"/>
</rdf:List>
</rdfirest>
</SlotList>
The causal link is then defined as follows:
<ProbabilisticRelationship rdf:ID="baldnessLink">
<parent_PR rdfiresource="Person_baldness"/>
<child PR rdfiresource="Person_baldness"/>

<slotList PR rdfiresource="mother father"/>
</ProbabilisticRelationship>

In general, consider the following generic instance of ProbabilisticRelationship.

<ProbabilisticRelationship rdf:ID="PR1">
<parent_ PR rdfiresource="FrameA_slotA"/>
<child_PR rdf:resource="FrameB_slotB"/>
<slotList PR rdfiresource="Slot_list"/>

</ProbabilisticRelationship>

Suppose further that the value of FROM in FrameA_SIotA is FrameA, and the value of TO is slotA, and
the value of FROM and TO in FrameB_slotB, are FrameB and slotB, respectively and the value of

Slot_list = <slotl, slot2, ..., slotN>. Assuming that we define a predicate ‘causallylnfluences’, we can
interpret the predicate that ProbabilisticRelationship represents as follows:

(implies

(and

(instantiates ?FA FrameA)
(slotA ?FA ?7VALA)
(slotl ?FA ?SIVAL)
(slot2 ?SIVAL ?S2VAL)

(slotN ?Sn-1VAL ?FrameBInstance)
(slotB ?FrameBlInstance ?VALB))
(causallyInfluences ?VALB ?VALA))

In this case, the interpretation is that the value of SlotA for an instance FA of FrameA is causally
influenced by the value of slotB on the instance of FrameB linked to FA by the given chain of relations.
5.3 Variable Discretizations

When specifying a continuous (i.e., numeric-valued) variable in a PRM, it is often advantageous to specify
a discretization of the space of values into bins of ranges. For instance ,it may not be tractable to perform



probabilistic inference with a continuous expression for the probabilistic relationship between the variable
and its parents. Specifying a discretization and constructing a discrete approximation to the conditional
probability distribution can allow the inference to be performed at a desired level of accuracy. In addition,
different situations may demand discretizations of different granularities for a given variable. To
accommodate this OWL QM provides a method for specifying discretizations within the Protégé
framework. KEEPER allows the user to specify a discretization for a datatype property with a continuous
(e.g. double) range associated to a class. For instance, the user may wish to discretize a double-valued
OWL property, reportedTemp, when associated to a particular OWL class, into bins, one of which is the
bin HighCelsius from [250,500). In order to specify such a discretization, a base class in the base ontology
called RangeOfValues has been defined. Properties for the bins, the lower and upper bounds, and whether
each endpoint is open or closed with other metaproperties have also been created. In order to define a
particular partition (e.g., for temperatures), a subclass of RangeOfValues, (e.g., RangeOfTemperatures)
is defined. Each instance of RangeOfTemperatures then specifies a particular named bin (e.g.,
MidCelsius, [70, 250) ). Each endpoint should be specified as open or closed. Thus, to specify the
discretization described above, we would have four instances of RangeOfTemperatures. The instance
that represents the VeryHighCelsius bin is declared in OWL as follows:
<RangeOfTemperatures rdf:ID="HighCelsius">
<discretizationBinName rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
high
</digscretizationBinName>
<lowerBound rdf:datatype="http://www.w3.0rg/2001/XMLSchema#float">
251.0
</lowerBound>
<closedLowerBound rdf:datatype="http://www.w3.0rg/2001/XMLSchema#boolean">
true
</closedLowerBound>
<upperBound rdf:datatype=http://www.w3.0org/2001/XMLSchema#float>
500.0
</upperBound>
<closedUpperBound rdf:datatype="http://www.w3.0org/2001/XMLSchema#boolean">
false
</closedUpperBound>
</RangeOfTemperatures™>

This declaration also specifies that, in the QM model (and, thus, the resulting BNs), any slot that is
discretized using this bin declaration will have, in its domain of possible values, a value with the name
“high”. To map a discretization to a FrameSlotPairing, the OWL object property called discretization on
the FrameSlotPairing class is used. This is an example of another facet defined on the class of
FrameSlotPairings.

<owl:ObjectProperty rdf:ID="discretization">

<rdfs:domain rdf:resource="#FrameSlotPairing"/>
</owl:ObjectProperty>

5.4 Representing Probability Distributions and Tables

We have discussed the representational apparatus required to define the probabilistic distributions in a
probabilistic relationship. To specify the distributions for a range of values, we must give a probability
value for every possible combination of possible states of the parent variables in the relationship and the
different values that the attribute or slot can take. So, for example, if an attribute has three possible values
and it has two parent attributes, each of which can take on two different values, then it is necessary to state
twelve different probability values corresponding to each possible combination of variable — value states. A
probability distribution is defined by creating an instance of ConditionalProbabilityTable in which the
probability values will be stored. associatedCPT relates a FrameSlotPairing to its associated
ConditionalProbabilityTable. If a FrameSlotPairing has no parents, then the associated table becomes a
simple one row table. The values in a ConditionalProbability are contained in instances of CPTCell, each
of which is linked to a ConditionalProbabilityTable via the cptCell property.

<owl:ObjectProperty rdf:ID="cptCell">



<rdfs:domain rdf:resource="#ConditionalProbabilityTable"/>

<rdfs:range rdf:resource="#CPTCell"/>
</owl:ObjectProperty>
<owl:Class rdf:ID="CPTCell">

<rdfs:subClassOf rdfiresource="#AbstractEntity"/>
</owl:Class>

A cell is defined by three attributes. These include an AttributeValuePairList, linked to the cell by the
property attributeValueList, which is a list of ordered pairs representing the association of each parent
attribute with one of its possible values. relevantValue specifies the value of the attribute in the
FrameSIlotPairing under consideration. If the slot in the FrameSlotPairing under consideration can take
on the values ‘true’ or ‘false’, then the value of relevantValue for any cell (cptCell) associated with the
FrameSlotPairings’s ConditionalProbabilityTable will be either ‘true’ or ‘false’. cellValue gives the
probability of that value given the state of the parents as specified in the AttributeValuePairList for that
cell.

<owl:FunctionalProperty rdf:ID="attributeValueList">
<rdfs:range rdf:resource="#AttributeValuePairList"/>
<rdfitype rdf:resource="http://www.w3.0rg/2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#CPTCell"/>
</owl:FunctionalProperty>
<owl:DatatypeProperty rdf:ID="cellValue">
<rdfs:domain rdf:resource="#CPTCell"/>
<rdfitype rdfiresource="http://www.w3.0rg/2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="relevantValue">
<rdfs:range rdfiresource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#CPTCell"/>
<rdf:type rdfiresource="http://www.w3.0rg/2002/07/owl#FunctionalProperty"/>
</owl:DatatypeProperty>

The AttributeValuePairList class is the set of lists of AttributeValuePairings. An AttributeValuePairing
is an abstract object with two properties. One of the properties, parentSlot, specifies a particular attribute,
one that is a parent to the attribute in question; the other one specifies one of the possible values for that
slot. A slot is specified with a ProbabilisticRelationship instance. The actual attribute having the causal
influence will be the slot in the FrameSlotPairing that is the value of parent PR in the
ProbabilisticRelationship. We refer to the ProbabilisticRelationship to clearly disambiguate, as the
same FrameSlotPairing could play causal roles in different ways. If the baldness of both my maternal and
paternal grandfather influence the probability of my own baldness, then the operative FrameSlotPairing
would be Person_baldness in both instances, but we must disambiguate which person’s baldness plays
which causal role. Referring to the relevant ProbabilisticRelationship instance does that because the slot
list associated with the ProbabilisticRelationship can be used to perform the disambiguation.

<owl:Class rdf:ID="AttributeValuePairing">
<rdfs:subClassOf rdf:resource="#AbstractEntity"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="parentSlot">
<rdfs:domain rdf:resource="#AttributeValuePairing"/>
<rdfs:range rdf:resource="#ProbabilisticRelationship"/>
<rdf:type rdfiresource="http://www.w3.0rg/2002/07/owl#FunctionalProperty"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="value">
<rdf:type rdfiresource="http://www.w3.0rg/2002/07/owl#Functional Property"/>
<rdfs:domain rdf:resource="#AttributeValuePairing"/>
<rdfs:range rdf:iresource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:DatatypeProperty>

Consider how this would be implemented for the PRM that we just mentioned, i.e., let us suppose that in

our PRM the user wants to assert that if one’s maternal grandfather is bald then the probability that that
person will be bald is .7 and if the maternal grandfather isn’t bald, then the probability that the person will



be bald is only .2. To create a cell for this table, a ConditionalProbabilityTable is associated with the
relevant FrameSlotPairing, Person_baldness:

<FrameSlotPairing rdf:ID="Person_baldness">
<associatedCPT>
<ConditionalProbabilityTable rdf:ID="CPT_Person_baldness"/>
</associatedCPT>
<protege:TO rdf:resource="#baldness"/>
<protege:FROM rdf:resource="#Person"/>
</FrameSlotPairing>

The cells in the table are then defined. Consider how to create the cell specifying that when the maternal
grandfather is bald, the probability that a person will be bald is .7. First, an AttributeValuePairing is
created associating the baldness attribute of the grandfather with the value “true”. The value of parentSlot
will be the ProbabilisticRelationship created above, i.c., PersonBaldness and we link that to the value
‘true’. The representation is as follows:

<AttributeValuePairing rdf:ID="GrandfatherBaldness_true">
<Value rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>true</Value>
<parentSlot>
<ProbabilisticRelationship rdf:ID="baldnessLink"/>
</parentSlot>

A list is then made of all the parent variable values for that cell. Since there is only one parent to consider,
the list is made up of only one element, the description of the state in which the grandfather is bald.

<AttributeValuePairList rdf:ID="AttributeValuePairList grandfather bald">
<rdf:first>
<AttributeValuePairing rdf:ID="GrandfatherBaldness_true">
<Value rdf:datatype="http://www.w3.0org/2001/XMLSchemat#string"
>true</Value>
<parentSlot>
<ProbabilisticRelationship rdf:ID="baldnessLink"/>
</parentSlot>
</AttributeValuePairing>
</rdf:first>
<rdfirest rdfiresource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#nil"/>
</AttributeValuePairList>

This list then becomes one of the values in an instance of CPTCell. It is also necessary to specify that the
probability that the person will be bald, i.e., that ‘baldness == true’ for that person will therefore be .7.
This cell is then associated with the original cell and the following representation results:

<FrameSlotPairing rdf:ID="Person_baldness">
<associatedCPT>
<ConditionalProbabilityTable rdf:ID="CPT_ Person baldness">
<cptCell>
<CPTCell rdf:ID="Person_bald grandfather bald">
<cellValue rdf:datatype="http://www.w3.0rg/2001/XMLSchema#decimal"
>(.7</cellValue>
<attributeValueList>
<AttributeValuePairList rdf:ID="AttributeValuePairList grandfather bald">
<rdf:first>
<AttributeValuePairing rdf:ID="GrandfatherBaldness_true">
<Value rdf:datatype="http://www.w3.0org/2001/XMLSchemat#string"
>true</Value>
<parentSlot>
<ProbabilisticRelationship rdf:ID="baldnessLink"/>
</parentSlot>
</AttributeValuePairing>
</rdf:first>
<rdf:rest rdfiresource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#nil"/>
</AttributeValuePairList>
</attributeValueList>
<relevantValue rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"



>true</relevantValue>
</CPTCell>
</cptCell>

</ConditionalProbabilityTable>
</associatedCPT>

Note that the above represents but one cell in the CPT for a fairly simple distribution. The markup required
for a more elaborate table is much more involved.

6 Conclusion

We have presented the basic components required to extend the OWL language to represent PRMs. This
work is of a kind with recent proposals to extend OWL by merging it with RuleML, insofar as we are
seeking to find a relatively lightweight extension of OWL that will extend expressiveness without an
overwhelming increase in representational complexity.  However, the development of this extension
presented some surprises in terms of the representational complexity need to implement OWL for PRM
representation. A number of facts seem to argue against OWL as an appropriate foundation for something
sufficiently expressive to handle probabilistic models..

a) Despite the prima facie analogous structure, the mapping from OWL classes and properties to
PRM structures such as QM frames and slots is not meaning preserving, particularly with
respect to the semantics of overriding. In particular, since OWL does not directly support
attaching additional information at a “slot-at-class” level, additional structure must be
constructed in OWL to support the mapping.

b) The implementation of PRMs in OWL requires the construction of numerous higher order
entities like FrameSlotPairings, SlotChains, ProbabilisticRelationships as well as slots
that have classes and slots as domains and ranges. The construction and implementation of
such higher order entities is not well supported in OWL.

c¢) Representation of probabilistic structures and distributions requires the extensive
implementations of lists. Like higher order entities, lists in OWL languages are second-class
citizens in OWL enjoying minimal support in terms of parsing, reasoning or even editing and
construction in the extant OWL tools. They are implemented in highly complex structures
that are difficult to manage and use.

d) Related to (a), (b), and (c), representation of PRMs in OWL extremely complicated as
compared to the native syntax of most PRM languages. A PRM that is representable in
twenty lines in a well-suited format could quite conceivably require hundreds or thousands of
lines in OWL QM. In this sense, OWL QM is disanalogous with a SWRL extension. Of
course, OWL is designed for machine readability rather than human readability.
Nevertheless, parsimony appears to argue against an OWL implementation of uncertainty
models.

Much of this complexity of structure and bulkiness of model specifications can be hidden from users and
kept in the background. Extant tools for wizard development available in Ontology development GUIs
allow us to implement these representational tools with reasonable effort. Nevertheless, it is natural to ask
whether OWL would be the base for semantic web reasoning had it not been for the fact that it was the
language with which development began. An important question to ask here is whether OWL is the
correct foundation for probabilistic representation or whether a more reasonable approach would be to
dismiss the OWL paradigm and introduce or adapt a competing representational paradigm for uncertainty
reasoning in the semantic web context.

If the representational complexity described above is rendered mostly irrelevant because of the ability
to implement effective editing tools, the next steps in this process is to develop the abstract syntax and
formal semantics for this extension. For these purposes we would look to [1] as a possibly compatible
approach to formally expressing the semantics.

10



References

o =

10.

11.

12.

13.

14.
15.

16.

17.

18.

Costa, Paulo, Bayesian Semantics for the Semantic Web, PhD Dissertation, 2005.

Cozman, F.G. The Interchange Format for Bayesian Networks,
http://www.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/.

Getoor, Lise, Nir Friedman, Daphne Koller, and Avi Pfeffer. Learning Probabilistic Relational Models. In
Saso Dzeroski and Nada Lavrac, eds., Relational Data Mining, Springer-Verlag, New York, 2001.

Horrocks, Ian, ef al, SWRL: A Semantic Web Rule Language Combining OWL and RuleML, May, 2004,
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521.

IET, Inc., Quiddity Technical Guide, 2005, see www.quiddity.com.

IET, Inc., The Role Of Ontologies in Probabilistic Knowledge Representation, IET Technical Report, Oct.
2004.

Koller, D., A. Levy, A. Pfeffer, P-Classic: A Tractable Probabilistic Description Logic. Proceedings of the
AAAI Fourteenth National Conference on Artificial Intelligence, 1997.

Laskey, Kathryn. First-Order Bayesian Logic. Technical Report, George Mason University Department of
Systems Engineering and Operations Research, April 2005.

Laskey Kathryn, Suzanne Mahoney, and Edward Wright. Hypothesis Management in Situation-Specific
Network Construction. In Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference,
Morgan Kaufmann Publishers, San Mateo, California, 2001.

Minsky, M. "A Framework for Representing Knowledge." in P. H. Winston (Ed.) The Psychology of
Computer Vision, NY:McGraw-Hill, 1975.

Mcguinness, D, Van Harmelen, Frank, OWL Web Ontology Language Overview, W3C Recommendation,
February 10, 2004. http://www.w3.0rg/TR/2004/REC-owl-features-20040210/.

Ngo, Liem, and Peter Haddawy. Answering Queries from Context-Sensitive Probabilistic Knowledge Bases.
Theoretical Computer Science, 171:147-171, 1996.

Patel-Schneider, Peter, Hayes, Patrick, Horrocks, lan. OWL Web Ontology Language Semantics and
Abstract Syntax, February 2004. http://www.w3.org/TR/owl-semantics/.

Pearl, Judea. Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Mateo, CA, 1998.
Zhongli Ding and Yung Peng, A Probabilistic Extension to Ontology Language OWL, Proceedings of the
37" Hawaii International Conference on System Sciences, 2004.

Russell, Stuart, and Peter Norvig, “Artificial Intelligence: A Modern Approach”, 2nd edition, Prentice-Hall,
Upper Saddle River, NJ. 2003.

David J. Spiegelhalter, Andrew Thomas, and Nicky Best. Computation on Graphical Models. Bayesian
Statistics, 5: 407-425, 1996.

Tudorache, Tania, Representation and Management of Reified Relationships in Protégé, Protégé Conference,
Bethesda Maryland, July, 2004.

11



A Fuzzy Semantics for Semantic Web Languages

Mauro Mazzieri' and Aldo Franco Dragoni?

! mauro .mazzieri@gmail.com

2 Universita Politecnica delle Marche
Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni (DEIT)
a.f.dragoni@univpm.it

Abstract. Although the model-theoretic semantics of the languages
used in the Semantic Web are crisps, the need arise to extend them
to represent fuzzy data, in the same way fuzzy logic extend first-order-
logic. We will define a fuzzy counterpart of the RDF Model Theory for
RDF (section 2) and RDF Schema (section 3). Last, we show how to
implement the extended semantics in inference rules (section 4).

Keywords: Fuzzy Logic, Knowledge Representation, Semantic Web, RDF,
RDF Schema.

1 Knowledge representation on the web

The Semantic Web is an extension of the current web in which information
is given well-defined meaning[1] by the use of knowledge representation (KR)
languages.

The KR languages used (RDF, RDF Schema and OWL) have the character-
istics that make them useful on the web|[2]:

— the elements of the domain are represented by URI;
— there is no global coherence requirements, as local sources can make asser-
tions independently without affecting each other’s expressiveness.

The languages have the ability to describe, albeit not formally, much more
than their semantics can express. Their model theory captures only a formal no-
tion of meaning, captured by inference rules; the exact ‘meaning’ of a statement
can depend on many factors, not all accessible to machine processing[3]. This
feature can be useful to represent information from fields that require knowl-
edge representation paradigms other than the FOL-like RDF Model Theory or
the expressive Description Logic used by OWL. Amongst those paradigms there
is fuzzy logic, to represent vague or ambiguous knowledge.

2 Fuzzy RDF

RDF has its own model-theoretic semantics, similar to that of first-order logic.
To represent fuzzy data, we will define a syntactic and semantic extension of
RDF, similar to the extension from first-order logic to fuzzy logic.
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Even if fuzzy data can be simply seen as a juxtaposition of a triple and a
number, the model-theoretic approach has well-known theoretical advantages.

We will try to be as plain as possible. Starting from RDF Syntax and RDF
Model Theory, we will make as few changes as possible. In the rest of the paper,
for the sake of brevity only the changes from RDF Semantics[3] are shown.

2.1 Syntax

The RDF syntax must be extended to add to the triple (subject, predicate,
object) a value. Such a value can be taken as a real number in the interval [0,
1], but every bounded real interval will do.

This is not an extension from a 3-elements tuple to a 4-elements tuple as it
may seem at a first glance. The added element has a syntactic nature different
from the others: it is not an element of the domain of the discourse, but a
property related to the formalism used by the language to represent uncertainty
and vagueness.

The simple concrete syntax we define is as an extension of the EBNF of
N-Triples as given in [4]. Our extension is given in table 1.

N-Triples is a line-based, plain text format for encoding an RDF Graph, used
for expressing RDF test cases. A statement has the form s p o., where s, p and
o are respectively the subject, the predicate and the object of the statement. Our
extended syntax add an optional prefix n: to a statement in N-triple notation,
where n is a decimal number representing the fuzzy truth-value of the triple.
The use of decimal numbers instead of real numbers is only a limitation of the
syntax and does not undermine the discussion.

The term triple, used in the EBNF for N-Triple, is replaced with the more
generic term statement. Triple and statement are often used in semantic web lit-
erature as a synonym, but we prefer to use the latter to avoid confusion between a
plain RDF statement (made actually of three parts) and a fuzzy RDF statement
(that, although is still a triple semantically, is made up of four elements).

The fuzzy value is defined as optional. This way, the syntax is backward-
compatible; the intended semantics is that a statement with the form s p o. is
equivalent to the statement 1: s p o.. With such a (syntactic only) default, we
could take an inference engine implementing fuzzy RDF, let it parse plain RDF
statements, and get the same results of a conventional RDF inference engine.
Furthermore, as it would be clear in the description of fuzzy RDF inference rules
(section 4), even the complexity of the computation would be of the same order.

We will not give an abstract syntax, nor a RDF/XML based syntax, as
they would not be useful. It can be shown that all “physical“ data (i.e., data
transmitted between host or processes) can be encoded using plain RDF reified
statements. The extended syntax will be used only in the paper to write down
the examples.
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fuzzyNtripleDoc ::= line*
. *

line = ws* (.comment | statement )? eoln

comment = ‘#’ ( character — (cr | 1f ) )*

statement = (value ws+)? subject ws+ predicate ws+ object ws* ‘.7 ws*

value x=110.[0-9]+

subject ::= uriref | nodelD

predicate ::= uriref

object ::= uriref | nodeID | literal

uriref = ‘<’ absoluteURI ‘>’

nodelD @= ‘_:’ name

literal ::= langString | datatypeString

langString =" string ‘" ( ‘Q’ language )7

datatypeString ::= ‘"’ string ‘"’ ‘~~’ uriref

language n= [a—z]+ (-7 [a—20-9]+ )*
encoding a language tag.

ws ::= space | tab

eoln m=cr|1lf|crlf

space = #x20 /* US-ASCII space - decimal 32 */

cr = #xD /* US-ASCII carriage return - decimal 13 */

If = #xA /* US-ASCII line feed - decimal 10 */

tab = #x9 /* US-ASCII horizontal tab - decimal 9 */

string ::= character™ (with escapes as defined in section Strings of [4])

name = [A-Za-z][A-Za—20-9]*

absoluteURI ::= character+ (with escapes as defined in section URI References
of [4])

character = [#x20-#xTE] /* US-ASCII space to decimal 126 */

Table 1. EBNF for Fuzzy N-Triples

2.2 Simple interpretation

The RDF Model Theory[3] is based on the concept of extension. An interpre-
tation satisfies a triple s p o. if the couple formed by the interpretation of
the subject and the interpretation of the object belongs to the extension of the
interpretation of the property.

In this fuzzy counterpart, a couple (subject, object) has a membership de-
gree to the extension of the predicate, given by the number prepended to the
statement. The extension is not an ordinary set of couples anymore, but a fuzzy
set of couples. In other words, a fuzzy RDF interpretation satisfies a statement
n: s p o. if the membership degree of the couple, formed by the interpreta-
tion of the subject and the interpretation of the object, to the extension of the
interpretation of the predicate, is greater or equal than n.

We have chosen not to make the mapping between vocabulary items and
domain fuzzy. Instead, the membership of a resource to the domain is fuzzy.
This is a step which poses some theoretical problems, in particular when we
have to deal with properties in simple interpretations. In RDF interpretation,
the property domain I P is a subset of the resource domain IR, so in fuzzy RDF
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interpretations would be enough to make I'P a fuzzy subset of IR; in simple
interpretations, instead, there is no formal relation between I P and I R, so when
the mapping I.S from URI references to (IR U IP) becomes fuzzy we need a
further device. The chosen solution is to define a domain IDP for properties,
so that IP is a fuzzy subset of IDP, and to modify the definition of IS to a
mapping URI references € V. — (IRUIDP). RDF interpretations does not need
IDP, as IP can be shown to be a fuzzy subset of IR.

Definition of a simple interpretation A simple fuzzy interpretation I of a vocab-
ulary V is defined by:

. A non empty set IR of resources, called the domain or universe of I

. A non empty set IDP, called the property domain of I

. A fuzzy subset IP of IDP, called the set of properties of T

. A fuzzy mapping IEXT : [P — 2IBXIR e the fuzzy set of pairs (x,y)
with z,y € IR.

. A mapping IS from URI references € V.— (IR U IDP)

. A mapping I'L from typed literals € V — IR

7. A distinguished subset LV C IR, called the set of literal values, which con-

tains all the plain literals of V'

=W N

D Ot

The belonging of an element to the properties domain is strictly related to
the use of such element as a property in a statement. Therefore, we have defined
a membership degree to the property domain, intuitively related to the truth
value of the statements in which the resource is used as a property.

2.3 Denotations for ground graphs

The next step is to define the semantic conditions an interpretation must satisfy
in order to be a model for a graph. We state the semantic conditions that relate
the membership degree of a couple (subject, object) to an extension and the
truth of a fuzzy statement.

We will use the abbreviated Zadeh’s notation A(z) = n, instead of pa(x) = n,
to state that the membership degree of the element x to the set A is equal to
n [5].

Semantic conditions for ground graphs

— if F is a plain literal aaa € V, then I(E) = aaa

— if F is a plain literal aaa@ttt € V, then I(E) = (aaa, ttt)

— if E is a typed literal € V, then I(E) = IL(E)

— if F is a URI reference € V, then I(E) = IS(F)

— if E is a ground triple n: s p o., then I(E) = true if s, p and o € V,
IP(I(p)) 2 nand IEXT(I(p))({I(s),I(0))) > n, otherwise I(FE) = false.

— if E is a ground RDF graph, than I(F) = false if I(E’) = false for some
triple E’ € E, otherwise I(E) = true
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Only the condition of truth and falsity of a ground statement in the interpre-
tation is affected. The given formulation of the condition has as a consequence
that a graph where the same statement appears more than once, with differ-
ent membership degrees, is equivalent to a graph where the statement appears
only once, with a membership degree equal to the maximum of the membership
degrees.

Note that whether a statement is a model for a graph or not is not a fuzzy
concept; it is either true or false. However, it could be interesting to compute
the minimum and maximum membership degree to an extensions a couple must
have in an interpretation to be a model of a given graph. This minimum degree
has a role similar to the degree of truth of a statement in a knowledge base.

2.4 Simple entailment

The definition of simple interpretation is not affected. A set S of RDF graphs
(simply) entails a graph E if every interpretation which satisfies every member
of S also satisfies F.

Given a graph G and a triple (s, p, 0), it could be interesting to compute
the minimum and maximum value of n such that G entails n: s p o.. Those
bounds must be taken in account when we compute the deductive closure of the
graph, as it is not unique.

Section 2 of RDF Semantics [3] shows many lemmas that apply to simple
interpretations. All of them retain their validity within fuzzy RDF Model Theory,
making some adjustments in the proof of some of them. We will show these.

The Empty Graph Lemma can be shown using the same proof. The definition
of an empty graph is the same as in plain RDF: an empty graph is a graph with no
statements at all. It is important to note that an empty graph can not be defined
as a graph with no not-zero-valued statements. Statements such as 0: s p o.,
although pretty useless, cannot be ignored, as the semantic requirement that s,
p and o must belong to the graph’s vocabulary still applies.

Subgraph Lemma, Instance Lemma and Merging Lemma retain both their
validity and their proofs with the new semantics.

Interpolation Lemma, Anonymity Lemma, Monotonicity Lemma and Com-
pactness Lemma make use in their proof of a way of constructing an interpre-
tation of a graph using lexical items in the graph itself, the so called Herbrand
interpretation [6]. To prove the lemmas, we need to construct a similar interpre-
tation for a fuzzy graph.

The (simple) Herbrand fuzzy interpretation of G, written Herb(G), can be
defined as follows.

— LVierb(G) is the set of all plain literals in G;

— I Rperb(G) is the set of all names and blank nodes which occur in subject or
object position of statements in G}

— IDPpern(G) is the set of URI references which occur in the property position
of statements in G;
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— I Pherb()(p) is the maximum of n for all statements in which p occur in
property position;
— IEX Tyerv(c)((s, 0)) is the maximum n for all the statements n: s p o. in

— IShery(G) and ILyery(G) are both identity mappings on the appropriate
parts of the vocabulary of G.

Using this definition of Herbrand interpretation instead of that in Appendix
A of [3], the proofs for cited lemmas still apply.

2.5 RDF Interpretation
RDF Semantic Conditions

— IP(x) =IEXT(I(xdf : type))({(z, I(rdf : Property))
— If 7xxx” AArdf : XMLLiteral € V and xxx is a well-typed XML literal string,
then

o JL("xxx” A Ardf : XMLLiteral) is the XML value of xxx;
o JL("xxx” A Ardf : XMLLiteral) € LV;
o JEXT(I(rdf : type))
((IL("xxx” A Ardf : XMLLiteral),
I(rdf : XMLLiteral))) =1
— If xxx” AArdf : XMLLiteral € V and xxx is an ill-typed XML literal string,
then
o JL("xxx” A Ardf : XMLLiteral) ¢ LV;
o JEXT(I(rdf : type))
({(IL("xxx” A Ardf : XMLLiteral),
I(rdf : XMLLiteral))) =0

The first RDF semantic condition has the consequence that IP must be a
subset of IR. Given such a fact, there is no more need of IDP, as it was for
simple interpretation. I P can be directly defined as a fuzzy subset of I R.

The second and third conditions equal to see the well-formedness of an XML
Literal as crisp truth-valued. We could conceive an external machinery that can
be considered completely trustworthy as it classify an XML literal as well-formed
or not.

RDF aziomatic triples By definition, we give axiomatic triples a unit truth
value. Given the (syntactic) convention that a triple s p o. is equivalent to the
fuzzy statement 1: s p o., we can take the table of axiomatic triples of RDF in
section 3.1 of [3] and copy it as-is as the table of axiomatic statements of fuzzy
RDF.
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3 Fuzzy RDF Schema

The path from RDF Schema to Fuzzy RDF Schema follows the same guidelines
of the previous section.

The RDFS semantics is conveniently stated in terms of a new semantic con-
struct: the class [3]. A class is a resource with a class extension, ICEXT, which
represents a set of things in the universe which all have that class as the object
of their rdf : type property. Thus, the definition of a class roots in the definition
of extension.

In fuzzy RDF, extensions are fuzzy set of couples; in fuzzy RDFS, class
extensions are fuzzy sets of domain’s elements.

3.1 RDFS Interpretation

A RDFS interpretation define the domains for resources (I R), literals (IL) and
literal values (LV') in terms of classes. In fuzzy RDFS they are fuzzy subdomains
of IR.

We will give RDFS semantic conditions and axiomatic triples, then we will
try to explain the more problematic definitions: domains/ranges (section 3.2)
and subproperties/subclasses (section 3.3).

RDFS semantic conditions

ICEXT(y)(xz) = IEXT(I(xdf : type))({z,y))

e /C =ICEXT(I(rdfs : Class))
e IR=ICEXT(I(rdfs : Resource))
e /L =ICEXT(I(rdfs:Literal))

— ICEXT(y)(u) > min(JEXT(I(rdfs : domain))({x,y)), IEXT(z)({u,v)))

— ICEXT(y)(u) > min(JEXT(I(rdfs : range))((z,y)), [EXT(z)({u,v)))

— IEXT(I(rdfs : subProperty0f)) is transitive and reflexive on IP

— If IEXT (rdfs : subProperty0f)((z,y)) = n, then IP(z) > n, IP(y) > n,
ming, {1 — IEXT(x)((a,b)) + IEXT(y)({(a,b))} > n

— IEXT(I(rdfs : subClass0f))((x, I(rdfs : Resource))) =

— If IEXT(rdfs : subClass0f)({z,y)) = n, then IC(x) > n, IC(y) > n,
ming{1 — IC(z)(a) + IC(y)(a)} > n.

— IEXT(I(rdfs:subClass0f)) is transitive and reflexive on IC

— IEXT(I(rdfs : subProperty0f))(({x, I(rdfs : member))) =
ICEXT(I(rdfs : ContainerMembershipProperty))(x)

— ICEXT(I(rdfs : Datatype))(z) =
IEXT(I(rdfs : subClass0f))((z, [(rdfs : Literal)))

RDFS axiomatic triples As for RDF axiomatic triples, fuzzy RDFS axioms are
the same of plain RDFS, from section 4.2 of RDF Semantics [3].
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3.2 Domains and ranges

The semantic condition on domains looks quite complicated. To explain it, we
will proceed by grades.

In plain RDF Schema, if (z,y) € IEXT(I(rdfs : domain)) and (u,v) €
IEXT(x) then v € ICEXT (y).

In fuzzy set theory, let R be a fuzzy relation on X x Y. Then the domain
is defined as dom(R)(x) = sup, R(w,y) [7], i.e. the least upper bound of R(z,y)
for all y.

In fuzzy RDFS, we have to deal both with a fuzzy notion of domain, and
with a fuzzy assignment of a domain to a property.

Let consider a resource u and a class y. For each property x, we take the mini-
mum between I EXT(I(rdfs : domain))((z,y)) and IEXT(x)({u,v)). Then, fol-
lowing the original RDFS condition, ICEXT (y)(u) must be greater or equal
than this value.

The previous condition must hold for every property x, so it’s equivalent to
state that must be taken the maximum value.

The conditions for ranges are analogous.

3.3 Subproperties and subclasses

Subproperties and subclasses are fully analogous concepts. The set inclusion is
between extensions for the former, between class extensions of the latter.

To define the semantics of subClass0f and subProperty0f, we need a rela-
tion of set inclusion between fuzzy sets that takes into account also the degree
of the relation of inclusion itself. This relation must be transitive and reflexive.

Zadeh’s definition of fuzzy subset [8]° (AC B <= Voz € X A(x) < B(x))
is transitive and reflexive, but is not a fuzzy relation: either the set A is a subset
of B, or not. What we need is instead a weaker fuzzy subset relation; a relation
that reduces to the Zadeh’s one when the subclass/subproperty relation has a
unit truth value. It must also maintain the reflexivity and transitivity properties.

Dubois and Prade [7] define weak inclusion <, as

A<y B < z€(AUB),Vz € X,

where « is a parameter and (-), is the a-cut*. This relation is transitive only for
a> 1

Other definitions of weak inclusion make use of inclusion grades. An inclusion
grade I(A, B) is a scalar measure of the inclusion of the set A in the set B.
In general, A C, B iff I(A, B) > «, where C, denote a weak inclusion with
inclusion grade a.

We have chosen to use the inclusion grade defined as [7]:

3 Again, we use the abbreviation A(x) for the membership function pa(x).

4 The a-cut A, of A is the set of all elements with a membership value to A greater
than a, with a € (0,1]  As = {z|A(z) > o}
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I(A, B) = infaex (A [ —| B)(x)

where inf is the infimum and | — | is the bounded difference®.

When A C B, I(A,B) =1 [7].

This inclusion grade could also be written as I(A, B) = inf ¢ x (1—max(0, A(z)—
B(xz))) = inf e xmin(1, (1 — A+ B)).

Furthermore, let’s suppose that there is at least an x such that A(z) > B(z).
Then I(A, B) could be written as inf,cx (1 — A 4+ B). The semantic condition
requires such measure to be greater than or equal to n, where n is the truth
value of the statement. In this case the semantic condition reduces to

inf,ex(1—A+B)>n.

It could be interesting to ask how much this definition differs from the con-
dition for classical fuzzy subsets, A(z) < B(z).

If A C B, then I(A, B) = 1, so the semantic condition holds for any n € [0, 1].

Let’s call d(x) the difference d(x) = A(x)—B(x), so that 1 —A+B = 1—d. We
suppose that there is at least an = such that A(x) > B(z), so d(x) has at least a
positive value. The semantic condition could then be written inf,cx (1 —d(x)) >
n. The maximum positive value of the difference d equal to 1 — n.

As n is the truth value of the statement that asserts the relation of subprop-
erty or subclass, and 1 —n represent the lack of truth of the same statement, we
can conclude that the maximum allowable positive difference between A(z) and
B(x) is equal to the lack of truth on the subproperty or subclass relation.

4 Fuzzy RDF entailment rules

RDF Model Theory’s entailment rules [3] are all of the same form: add a state-
ment to a graph when it contains triples conforming to a pattern. Each rule
has only one or two antecedent statements and derive only one new inferred
statement; either P+ R or P,Q - R.

Given the way fuzzy RDF semantics is defined, the corresponding inference
rules for fuzzy RDF are analogous; only the fuzzy truth values of inferred state-
ments must be computed. The simplest possible choice that respect the semantics
is:

— With rules as P F @, having only one antecedent, the truth value of the
consequent () is taken to be the same of the antecedent P.

— With rules as P, @ F R, the truth value of R is the minimum between the
truth values of P and Q).

The inference rules for RDF/RDFS are shown in table 2. They were derived
from the rules used by the Sesame[10] forward-chaining inferencer.

"Veec X, (A|-|B)(z)=max(0, A(z) — B(z)) [9]
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Sesame is a generic architecture for storing and querying RDF and RDF
Schema. It makes use of a forward-chaining inferencer to compute and store the
closure of its knowledge base whenever a transaction adds data to the reposi-
tory[11]. Sesame applies RDF-MT inference rules in a optimized way, making
use of the dependencies between them to eliminate most redundant inferencing
steps.

To obtain a fuzzy RDF storage and inference tool it is only a matter of
modify Sesame RDF-MT inferencer, making it compute the correct truth values
for inferred statements, and to extend the underlying storage to make room for
a truth value (i.e., a number) for each statement.

This shows how a simple proof-of-concept fuzzy RDF inferencer is easy to
implement. The starting point is the code base of an inference engine that im-
plements the RDF model theory.

It can be shown that an inference engine implementing such rules is correct:
all its rules are wvalid, in the sense that a graph entails any larger graph that is
obtained by applying the rules to the original graph. There is no formal proof
that it is also complete, but there is not such a proof for plain RDF Model
Theory inference rules either.
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l# [antecedents consequent
1 |iii: xxx aaa yyy iii: aaa rdf:type rdf:Property
2.1 |iii: xxx aaa yyy kkk: xxx rdf:type zzz
jjj: aaa rdfs:domain zzz where kkk = min(iii, jjj)
2.2 |iii: aaa rdfs:domain zzz kkk: xxx rdf:type zzz
jjj: xxx aaa yyy where kkk = min(iii, jjj)
3.1 |iii: xxx aaa uuu kkk: uuu rdf:type zzz
jjj: aaa rdfs:range zzz where kkk = min(iii, jjj)
3.2 |iii: aaa rdfs:range zzz kkk: uuu rdf:type zzz
jjj: xxx aaa uuu where kkk=min(iii, jjj)
4a |iii: xxx aaa yyy jij: xxx rdf:type rdfs:Resource
4b  |iii: xxx aaa uuu iii: uuu rdf:type rdfs:Resource
5a.1|iii: aaa rdfs:subPropertyOf bbb kkk: aaa rdfs:subPropertyOf ccc
jjj: bbb rdfs:subPropertyOf ccc where kkk=min(iii, jjj)
5a.2|iii: bbb rdfs:subPropertyOf ccc kkk: aaa rdfs:subPropertyOf ccc
jjj: aaa rdfs:subPropertyOf bbb where kkk=min(iii, jjj)
5b [iii: xxx rdf:type rdf:Property iii: xxx rdfs:subPropertyOf xxx
reflexivity of rdfs:subPropertyOf
6.1 |iii: xxx aaa yyy kkk: xxx bbb yyy
jjj: aaa rdfs:subPropertyOf bbb where kkk=min(iii, jjj)
6.2 |iii: aaa rdfs:subPropertyOf bbb kkk: xxx bbb yyy
jjj: Xxx aaa yyy where kkk=min(iii, jjj)
Ta [iii: xxx rdf:type rdfs:Class iii: xxx rdfs:subClassOf rdfs:Resource
7b |iii: xxx rdf:type rdfs:Class iii: xxx rdfs:subClassOf xxx
reflexivity of rdfs:subClassOf
8.1 [iii: xxx rdfs:subClassOf yyy kkk: xxx rdfs:subClassOf zzz
jij: yyy rdfs:subClassOf zzz where kkk=min(iii, jjj)
8.2 liii: yyy rdfs:subClassOf zzz kkk: xxx rdfs:subClassOf zzz
jjj: xxx rdfs:subClassOf yyy where kkk=min(iii, jjj)
9.1 [iii: xxx rdfs:subClassOf yyy kkk: aaa rdf:type yyy
jjj: aaa rdfitype xxx where kkk=min(iii, jjj)
9.2 liii: aaa rdf:type xxx kkk: aaa rdf:type yyy
jjj: xxx rdfs:subClassOf yyy where kkk=min(iii, jjj)
10 [iii: xxx rdf:itype iii: xxx rdfs:subPropertyOf rdfs:member
rdfs:ContainerMembershipProperty
11 [iii: xxx rdf:type rdfs:Datatype jjj: xxx rdfs:subClassOf rdfs:Literal
X1 |iii: xxx rdf:_* yyy jjj: rdf:_* rdf:type rdfs:ContainerMembershipProperty
This is an extra rule for list membership
properties (_1, _2, _3, ...). The RDF MT
does not specify a production for this.

Table 2. Fuzzy

RDF inference rules
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Abstract. This paper addresses a major weakness of current technologies for
the Semantic Web, namely the lack of a principled means to represent and rea-
son about uncertainty. This not only hinders the realization of the original vi-
sion for the Semantic Web, but also creates a barrier to the development of new,
powerful features for general knowledge applications that require proper treat-
ment of uncertain phenomena. We propose to extend OWL, the ontology lan-
guage recommended by the World Wide Web Consortium (W3C), to provide
the ability to express probabilistic knowledge. The new language, PR-OWL,
will allow legacy ontologies to interoperate with newly developed probabilistic
ontologies. PR-OWL will move beyond the current limitations of deterministic
classical logic to a full first-order probabilistic logic. By providing a principled
means of modeling uncertainty in ontologies, PR-OWL will serve as a support-
ing tool for many applications that can benefit from probabilistic inference
within an ontology language, thus representing an important step toward the
W3C’s vision for the Semantic Web.

1 A Deterministic View of a Probabilistic World

Uncertainty is ubiquitous. If the Semantic Web vision [1] is to be realized, a sound
and principled means of representing and reasoning with uncertainty will be required.
Existing Semantic Web technologies lack this capability. Our broad objective is to
address this shortcoming by developing a Bayesian framework for probabilistic on-
tologies and plausible reasoning services. As an initial step toward our objective, we
introduce PR-OWL, a probabilistic extension to the Web ontology language OWL.

Although our research is focused in the Semantic Web, we are tackling a problem
that long predates the WWW: the quest for more efficient data exchange. Clearly,
solving that problem requires precise semantics and flexible ways to convey informa-
tion. While the WWW provides a new presentation medium, and technologies such as
XML present new data exchange formats, neither addresses the semantics of data

# The author's affiliation with The MITRE Corporation is provided for identification purposes
only, and is not intended to convey or imply MITRE's concurrence with, or support for, the
positions, opinions or viewpoints expressed by the author.
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being exchanged. The SW is meant to fill this gap, and the realization of its goals will
require major improvements in technologies for data exchange.

One of the main technical differences between the current World Wide Web and
the Semantic Web is that while the first relies on syntactic-only protocols such as
HTTP and HTML, the latter adds meta-data annotations as a means to convey shared,
precisely defined terms. That is, semantic awareness is exploited to improve interop-
erability among Web resources. Semantic interoperability requires shared repositories
of precisely defined concepts. Such repositories are called ontologies.

One can find many different definitions for the concept of ontology applied to in-
formation systems, each emphasizing a specific aspect its author judged most impor-
tant. Our focus is on ontology’s role as a structured form of knowledge representation.
Thus, we define an ontology as an explicit, formal representation of knowledge about
a domain of application. This includes: types of entities that exist in the domain,
properties of those entities, relationships among entities, and processes and events that
happen with those entities. In this definition, the term entity refers to any concept
(real or fictitious, concrete or abstract) that can be described and reasoned about
within the domain of application. Ontologies are used for the purpose of comprehen-
sively describing knowledge about a domain in a structured and sharable way, ideally
in a format that can be read and processed by a computer.

Semantically aware schemes must be able to represent and appropriately process
semantic differences between syntactically identical terms (e.g., “Grape” as a fruit
versus John Grape the person). This is not a trivial task. Semantic interoperability
requires shared sources of precisely defined concepts, which is exactly where ontolo-
gies play a key role. Yet, a traditional ontology can at best list multiple possible
senses for a word such as “Grape,” with no ability to grade their relative plausibility
in a given context. This is inadequate for an open world environment where incom-
plete information is the rule and plausible reasoning is required.

Current generation Semantic Web technology is based on classical logic, and is
lacks adequate support for plausible reasoning. For example, OWL, a W3C Recom-
mendation [2], has no built-in support for probabilistic information and reasoning.
This is understandable, given that OWL is rooted in web language predecessors (i.e.
XML, RDF) and traditional knowledge representation formalisms (e.g.. Description
Logics [3]). This historical background somewhat explains the lack of support for
uncertainty in OWL. Nevertheless, it is a serious limitation for a language intended
for environments where one cannot simply ignore incomplete information.

A similar historical progression occurred in Artificial Intelligence (AI). From its
inception, Al has struggled with how to cope with incomplete information. Although
probability theory was initially neglected due to tractability concerns, graphical prob-
ability languages changed things dramatically [4]. Probabilistic languages have
evolved from propositional to full first-order expressivity (e.g., [5]), and have become
the technology of choice for reasoning under uncertainty in an open world [6].
Clearly, the Semantic Web will pose similar uncertainty-related issues as those faced
by Al Thus, just as Al has moved from a deterministic paradigm to embrace prob-
ability, a similar path appears promising for ontology engineering.

This path is not yet being followed. The lack of support for representing and rea-
soning with uncertain, incomplete information seriously limits the ability of current
Semantic Web technologies to meet the requirements of the Semantic Web. Our work
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is an initial step toward changing this situation. We aim to establish a framework that
enables full support for uncertainty in the field of ontology engineering and, as a
consequence, for the Semantic Web. In order to achieve this goal, we choose to focus
on extending OWL so it can represent uncertainty in a principled way.

2 Related Research

One of the main reasons why Semantic Web research is still focused on deterministic
approaches has been the limited expressivity of traditional probabilistic languages.
There is a current line of research focused on extending OWL so it can represent
probabilistic information contained in a Bayesian Network (e.g. [7], [8]). The ap-
proach involves augmenting OWL semantics to allow probabilistic information to be
represented via additional markups. The result would be a probabilistic annotated
ontology that could then be translated to a Bayesian network (BN). Such a translation
would be based on a set of translation rules that would rely on the probabilistic infor-
mation attached to individual concepts and properties within the annotated ontology.
BNs provide an elegant mathematical structure for modeling complex relationships
among hypotheses while keeping a relatively simple visualization of these relation-
ships. Yet, the limited attribute-value representation of BNs makes them unsuitable
for problems requiring greater expressive power.

Another popular option for representing uncertainty in OWL has been to focus on
OWL-DL, a decidable subset of OWL that is based on Description Logics [3]. De-
scription Logics are a family of knowledge representation formalisms that represent
the knowledge of an application domain (the “world”) by first defining the relevant
concepts of the domain (its terminology), and then using these concepts to specify
properties of objects and individuals occurring in the domain (the world description).

Description logics are highly effective and efficient for the classification and sub-
sumption problems they were designed to address. However, their ability to represent
and reason about other commonly occurring kinds of knowledge is limited. One re-
strictive aspect of DL languages is their limited ability to represent constraints on the
instances that can participate in a relationship. As an example, suppose we want to
express that for carnivore to be a threat to another carnivore in a specific type of situa-
tion it is mandatory that the two individuals of class Carnivore involved in the situa-
tion are not the same. Making sure the two carnivores are different in a specific situa-
tion is only possible in DL if we actually create/specify the tangible individuals in-
volved in that situation. Indeed, stating that two “fillers” (i.e. the actual individuals of
class Carnivore that will “fill the spaces” of concept carnivore in our statement) are
not equal without specifying their respective values would require constructs such as
negation and equality role-value-maps, which cannot be expressed in description
logic. While equality role-value-maps provide useful means to specify structural
properties of concepts, their inclusion makes the logic undecidable [9].

Although the above approaches are promising where applicable, a definitive solu-
tion for the Semantic Web requires a general-purpose formalism that gives ontology
designers a range of options to balance tractability against expressiveness.
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Pool and Aiken [10] developed an OWL-based interface for the relational probabil-
istic toolset Quiddity*Suite, developed by IET, Inc. Their constructs provide a very
expressive method for representing uncertainty in OWL ontologies. Their work is
similar in spirit to ours, but is specialized to the Quiddity*Suite toolset. We focus on
the more general problem of enabling probabilistic ontologies for the SW. We employ
Multi-Entity Bayesian Networks (MEBN) as our underlying logical basis, thus pro-
viding full first-order expressiveness.

3 Multi-Entity Bayesian Networks

The acknowledged standard for logically coherent reasoning under uncertainty is
Bayesian probability theory. Bayesian theory provides a principled representation of
uncertainty, a logic for combining prior knowledge with observations, and a learning
theory for refining the ontology as evidence accrues. The logical basis for PR-OWL is
MEBN logic [5], which combines Bayesian probability theory with classical First
Order Logic. Probabilistic knowledge is expressed as a set of MEBN fragments
(MFrags) organized into MEBN Theories. An MFrag is a knowledge structure that
represents probabilistic knowledge about a collection of related hypotheses. Hypothe-
ses in an MFrag may be context (must be satisfied for the probability definitions to
apply), input (probabilities are defined in other MFrags), or resident (probabilities
defined in the MFrag itself). An MFrag can be instantiated to create as many instances
of the hypotheses as needed (e.g., an instance of the “Disease” hypothesis for each
patient at a clinic). Instances of different MFrags may be combined to form complex
probability models for specific situations. A MEBN theory is a collection of MFrags
that satisfies consistency constraints ensuring the existence of a unique joint probabil-
ity distribution over instances of the hypotheses in its MFrags.

MEBN inference begins when a query is posed to assess the degree of belief in a
target random variable given a set of evidence random variables. We start with a
generative MTheory, add a set of finding MFrags representing problem-specific in-
formation, and specify the target nodes for our query. The first step in MEBN infer-
ence is to construct a situation-specific Bayesian network (SSBN), which is a Baye-
sian network constructed by creating and combining instances of the MFrags in the
generative MTheory. When each MFrag is instantiated, instances of its random vari-
ables are created to represent known background information, observed evidence, and
queries of interest to the decision maker. If there are any random variables with unde-
fined distributions, then the algorithm proceeds by instantiating their respective home
MFrags. The process of retrieving and instantiating MFrags continues until there are
no remaining random variables having either undefined distributions or unknown
values. A SSBN may contain any number of instances of each MFrag, depending on
the number of entities and their interrelationships. Next, a standard Bayesian network
inference algorithm is applied. Finally, the answer to the query is obtained by in-
specting the posterior probabilities of the target nodes.

MEBN logic overcomes the limitations of the attribute-value representation of
standard BNs. To understand this limitation, consider a relational database in which
some entries are uncertain. A BN can represent only probabilities for a single table,
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and treats the rows of the table independently of each other. For example, in a medi-
cal system, the “Patient” table might include information such as age, smoking his-
tory, family history, and whether the patient has emphysema. A BN might represent
the probability of emphysema as a function of smoking history, age, and family his-
tory. If a patient’s family history were unknown, the BN could estimate the probabil-
ity of emphysema using probabilities for the family history. However, a BN cannot
represent relational information such as the increase in the probability of emphysema
for all siblings upon learning that one of their parents had emphysema. To incorporate
this kind of knowledge in a coherent manner, we need to combine relational knowl-
edge (e.g., siblings have the same family history) with attribute-value knowledge
(e.g., family history of emphysema increases the likelihood of emphysema).

To draw generalizations about individuals related in various ways, we need first-
order expressive power. Description logics are attractive because they provide limited
first-order expressivity, yet certain reasoning problems such as classification and
subsumption are decidable. Many researchers have worked to identify decidable
classes of problems for which efficient probabilistic algorithms exist (e.g., Naive
Bayes classification, in which features are modeled as conditionally independent
given an object’s class). The ontology language P-SHOQ(D) [11], based on descrip-
tion logics, falls into this class.

We have chosen to base PR-OWL on MEBN logic because of its expressiveness:
MEBN can express a probability distribution over models of any finitely axiomatiz-
able first-order theory. As a consequence, there are no guarantees that exact reasoning
with a PR-OWL ontology will be efficient or even decidable. On the other hand, a
future objective is to identify restricted sub-languages of PR-OWL specialized to
classes of problems for which efficient exact or approximate reasoning algorithms
exist. It is our view that a general-purpose language for the Semantic Web should be
as expressive as possible, while providing a means for ontology engineers to stay
within a tractable subset of the language when warranted by the application.

4 Probabilistic Ontologies

Before presenting our probabilistic ontology language, we begin by defining a
probabilistic ontology. Intuitively, an ontology that has probabilities attached to some
of its elements would qualify for this label, but such a limited definition is inadequate
for our purposes. Merely adding probabilities to concepts does not guarantee interop-
erability with other ontologies that also carry probabilities. More is needed than syn-
tax for including probabilities if we are to justify a new category of ontologies.

A probabilistic ontology is an explicit, formal knowledge representation that ex-
presses knowledge about a domain of application. This includes: (i) Types of entities
that exist in the domain; (i) Properties of those entities; (iii) Relationships among
entities; (iv) Processes and events that happen with those entities; (v) Statistical regu-
larities that characterize the domain; (vi) Inconclusive, ambiguous, incomplete, unre-
liable, and dissonant knowledge related to entities of the domain; and (vii) Uncer-
tainty about all the above forms of knowledge. In this definition, the term entity refers
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to any concept (real or fictitious, concrete or abstract) that can be described and rea-
soned about within the domain.

Probabilistic Ontologies are used for the purpose of comprehensively describing
knowledge about a domain and the uncertainty regarding that knowledge in a princi-
pled, structured and sharable way, ideally in a format that can be read and processed
by a computer. They also expand the possibilities of standard ontologies by introduc-
ing the requirement of a proper representation of the statistical regularities and the
uncertain evidence about entities in a domain of application.

5 PR-OWL

PR-OWL is an extension that enables OWL ontologies to represent complex Bayesian
probabilistic models in a way that is flexible enough to be used by diverse Bayesian
probabilistic tools based on different probabilistic technologies. That level of flexibil-
ity can only be achieved using the underlying semantics of first-order Bayesian logic,
which is not a part of the standard OWL semantics and abstract syntax. Therefore, it
seems clear that PR-OWL can only be realized via extending the semantics and ab-
stract syntax of OWL. However, in order to make use of those extensions, it is neces-
sary to develop new tools supporting the extended syntax and implied semantics of
each extension. Such an effort would require commitment from diverse developers
and workgroups, which falls outside our present scope.

Therefore, in this initial work our intention is to create an upper ontology to guide
the development of probabilistic ontologies. Daconta et al. define an upper ontology
as a set of integrated ontologies that characterizes a set of basic commonsense knowl-
edge notions [12]. In this preliminary work on PR-OWL as an upper ontology, these
basic commonsense notions are related to representing uncertainty in a principled way
using OWL syntax. If PR-OWL were to become a W3C Recommendation, this col-
lection of notions would be formally incorporated into the OWL language as a set of
constructs that can be employed to build probabilistic ontologies.

The PR-OWL upper ontology for probabilistic systems consists of a set of classes,
subclasses and properties that collectively form a framework for building probabilistic
ontologies. The first step toward building a probabilistic ontology in compliance with
our definition is to import into any OWL editor an OWL file containing the PR-OWL
classes, subclasses, and properties.

From our definition, it is clear that nothing prevents a probabilistic ontology from
being “partially probabilistic”. That is, a knowledge engineer can choose the concepts
he/she wants to include in the “probabilistic part” of the ontology, while writing the
other concepts in standard OWL. In this case, the “probabilistic part” refers to the
concepts written using PR-OWL definitions and that collectively form a MEBN The-
ory. There is no need for all the concepts in a probabilistic ontology to be probabilis-
tic, but at least some have to form a valid MEBN Theory. Of course, only the con-
cepts that are part of the MEBN Theory will be subject to the advantages of the prob-
abilistic ontology over a deterministic one.

The subtlety here is that legacy OWL ontologies can be upgraded to probabilistic
ontologies only with respect to concepts for which the modeler wants to have uncer-
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tainty represented in a principled manner, make plausible inferences from that uncer-
tain evidence, or to learn its parameters from incoming data via Bayesian learning.
While the first two are direct consequences of using a probabilistic knowledge repre-
sentation, the latter is a specific advantage of the Bayesian paradigm, where learning
falls into the same conceptual framework as knowledge representation.

The ability to perform probabilistic reasoning with incomplete or uncertain infor-
mation conveyed through an ontology is a major advantage of PR-OWL. However, it
should be noted that in some cases solving a probabilistic query might be intractable
or even undecidable. In fact, providing the means to ensure decidability was the rea-
son why the W3C defined three different version of the OWL language. While OWL
Full is more expressive, it enables an ontology to represent knowledge that can lead to
undecidable queries. OWL-DL imposes some restrictions to OWL in order to elimi-
nate these cases. Similarly, restrictions of PR-OWL could be developed that limit
expressivity to avoid undecidable queries or guarantee tractability. Possible restric-
tions to be considered for an eventual PR-OWL Lite include (i) constraining the lan-
guage to classes of problems for which tractable exact or approximate algorithms
exist; (ii) restrict the representation of the conditional probability tables (CPT) to
express a tractable and expressive subset of first-order logic; and/or (iii) to employ a
standard semantic web language syntax to represent the CPTs (e.g. RDF). As an ini-
tial step, we chose to focus on the most expressive version of PR-OWL, which does
not have expressivity restrictions and provides the ability to represent CPTs in multi-
ple formats.

An overview of the general concepts involved in the definition of a MEBN Theory
in PR-OWL is depicted in Figure 1. In this diagram, the ovals represent general
classes; and arrows represent major relationships between classes. A probabilistic
ontology must have at least one individual of class MTheory, which is a label linking
a group of MFrags that collectively form a valid MEBN Theory. In actual PR-OWL
syntax, that link is expressed via the object property hasMFrag (which is the inverse
of object property isMFragln).

Includes
(hasMFrag)
Is built from

(hasNode)

Has states

Is defined by
(hasProbDist)

Probability
Distribution

(hasPossibleValues)

Fig. 1. Overview of a PR-OWL MEBN Theory Concepts

Individuals of class MFrag are comprised of nodes, which can be resident, input, or
context nodes (not shown in the picture). Each individual of class Node is a random
variable and thus has a mutually exclusive and collectively exhaustive set of possible
states. In PR-OWL, the object property hasPossibleValues links each node with its
possible states, which are individuals of class Entity. Finally, random variables (rep-
resented by the class Nodes in PR-OWL) have unconditional or conditional probabil-

29



ity distributions, which are represented by class Probability Distribution and linked to
its respective nodes via the object property hasProbDist.

The scheme in Figure 1 is intended to present just a general view and thus fails to
show many of the intricacies of an actual PR-OWL representation of a MEBN The-
ory. Figure 2 shows an expanded version conveying the main elements in Figure 1,
their subclasses, the secondary elements that are needed for representing a MEBN
Theory and the reified relationships that were necessary for expressing the complex
structure of a Bayesian probabilistic model using OWL syntax.

Reification of relationships in PR-OWL is necessary because of the fact that prop-
erties in OWL are binary relations (i.e. link two individuals or an individual and a
value), while many of the relations in a probabilistic model include more than one
individual (i.e. N-ary relations). The use of reification for representing N-ary relations
on the Semantic Web is covered by a working draft from the W3C’s Semantic Web
Best Practices Working Group [13].

Although the scheme in Figure 2 shows all the elements needed to represent a
complete MEBN Theory, it is clear that any attempt at a complete description would
render the diagram cluttered and incomprehensible. A complete account of the
classes, properties and the code of PR-OWL that define an upper ontology for prob-
abilistic systems is given in [14]. These definitions can be used to represent any
MEBN Theory.

In its current stage, PR-OWL contains only the basic elements needed to represent
any MEBN theory. Such a representation could be used by a Bayesian tool (acting as
a probabilistic ontology reasoner) to perform inferences to answer queries and/or to
learn from newly incoming evidence via Bayesian learning.

Finding
Finding Simple Arg Input

MFrag relationship P =
Domain :’ )
MFrag v ' .
Argument . @ :
relationship L.’
Ordinary R Resident

Variable - oo .-
e Resident
Finding
Probability .. Resident
assignment o

Declarative
Probability i distribution
Distribution /=~

it \ PR-OWL
Conditional <.p

Boolean relationship table
RV states /®--"7 .7 .
. s C > Main Classes / Elements

Categorical™y \ 4 C > SubClasses
RV states Object C > Support / Built-in Elements
Entity

C O Reified Relationships

Fig. 2. Elements of a PR-OWL Probabilistic Ontology

However, building MFrags and all their elements in a probabilistic ontology is a
manual, error prone, and tedious process. Avoiding errors or inconsistencies requires



very deep knowledge of the logic and of the data structure of PR-OWL. Without
considering the future paths to be followed by research on PR-OWL (i.e. whether it
will be kept as an upper ontology or transformed into an actual extension to the OWL
language), the framework discussed here and in greater detail in [14] makes it already
possible to facilitate probabilistic ontology usage and editing by developing plugins to
current OWL editors. Figure 3 illustrates a plugin concept for the OWL Protégé editor
(which is itself a Protégé plugin). The figure illustrates how graphical construction of
an MFrag can be performed in a similar fashion to how a BN is constructed in one of
the many graphical editors for BNs. In this proposed scheme, in order to build an
MFrag a user would select the icon for the type of node he/she wants to create (e.g.
resident, input, context, etc.), connect that node with its parents and children, and
enter its basic characteristics (i.e. name, probability distribution, etc.) either by dou-
ble-clicking on it or via another GUI-related facility. Such a plugin would hide from
users the complex constructs required to convey the many details of a probabilistic
ontology, providing a more intuitive and less error-prone means of constructing and
maintaining probabilistic ontologies.

GXa)a) Starship Protégé 3.1 beta (file:/Volumes/Cockpit/Users/pc/Documents/Academia/Ontologies /Starship.pprj, OWL Files (.owl or .rdf))
FEEGEEEE RN EEEREEEEREN! <4iprotéyé
OWLClasses Ml Properties = Forms 4 Individuals @ Metadata  d PR-OWL
% TR EG
Irlalel lodselw] R[&/[E[=][©
MFrag Builder SSBN Vizualizer
Node Type pr-owl:Domain_MFrag » \E
@ Starship Zone T]
pr-owl:ObjectEntity T \
7 Qnt‘ext CONTEXT AREA
one
;‘;‘::“:" l tprev = Prev(t) l z = StarshipZone (st) l IsA(TimeStep, tprev)
SensorReport \
Input §
. IsA(Starship, st) IsA(Zone, z) IsA(TimeStep, t)
< > ;
) ’i \ INPUT AREA
= Resident
® Starship k | CloakMode(st) ZoneMD(z, tprev)
pr-owl:Resident 4
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StarshipZone K ArTOW
Subject / ZoneMD(z, t) ZoneNature(z)
ZoneEShips
ZoneFships
ZoneMD v
> hi ZoneEShips(z)
‘—j ’H Node Properties Zonefships(z)
~
= RESIDENT AREA
Ordinary
Variable
F @ Starship pr-owl: T
pr-owl:DomainMFrag 4 ZES_MoreThan3
Zone | ZES_3
Transporter Skolem ‘ ZES_2
DangerToself ﬁE?é
DangerToOthers -
SensorReport pr-owl:hasProbDist
SRData v 1 Z_ZoneEShips_decl_Quiddity
Ee—=———————3 \ Z_ZoneEShips_ddecl_Netica
. 3 \1 pr-owl:hasArgument v

Fig. 3. Elements of a PR-OWL Probabilistic Ontology
This brief idea of an operational concept barely scratches the surface of the many

possibilities for the technology presented here. Implementing a plugin such as the one
envisioned here is a development task that is a topic for future research. Nonetheless,
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the PR-OWL upper ontology definitions take an important first step toward making
probabilistic ontologies a reality. By opening the door to wide use of PR-OWL prob-
abilistic ontologies, the present research makes a significant contribution to realizing
the Semantic Web vision.

6 Conclusion

This paper describes a coherent, comprehensive probabilistic framework for the
Semantic Web, that provides a means of representing probabilistic knowledge and
providing web services such as plausible inference and Bayesian learning. The pro-
posed framework is an initial step towards a more comprehensive effort focused on
representing uncertainty in the Semantic Web.

A PR-OWL plugin for current OWL ontology editors is a priority for future efforts.
The process of writing probabilistic ontologies can be greatly improved via automa-
tion of most of the steps in the ontology building, not only for defining MFrags to
represent sets of related hypotheses, but also for consistency checking, reified rela-
tions and other tasks that demand unnecessary awareness of the inner workings of the
present solution. Once implemented, such a plugin has the potential to make probabil-
istic ontologies a natural, powerful tool for the Semantic Web.

Finally, the most important requirement for adoption of a language is the stan-
dardization process. This process goes significantly beyond academic research and
thus falls outside the scope of the present work. Nonetheless, we are confident of its
feasibility, which we believe we have demonstrated in this effort, and of its desirabil-
ity, given its potential to help solve many of the obstacles that stand in the way of
realizing the W3C’s vision for the Semantic Web.
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Abstract. Although Semantic Web service discovery has been extensively
studied in the literature ([7], [12], [15] and [10]), we are far from achieving an
effective, complete and automated discovery process. Using the incidence cal-
culus [4], a truth-functional probabilistic calculus, and a lightweight brokering
mechanism [17], the article explores the suitability of integrating probabilistic
reasoning in Semantic Web services environments. We show how the combina-
tion of relaxation of the matching process and evaluation of web service capa-
bilities based on a previous historical record of successful executions enables
new possibilities in service discovery.

1 Introduction

Discovery composition, invocation and interoperation are the core pillars of the
deployment of Semantic Web services [9]. Discovery has been extensively studied in
the literature ([7], [21], [12] and [15]). In a recent effort, the authors of [10] have
focused on providing a coherent and formal model for Semantic Web services dis-
covery.

Roughly speaking, the relaxation of the matching process between a goal (a func-
tional description of objectives that clients want to achieve using web services) and
web services capabilities (functional descriptions of a service) has been based on the
following set of matching notions [10]: (i) exact-match, a goal and matched web
service capabilities are the same; (ii) plug-in-match, a goal is subsumed by matched
web service capabilities; (iii) subsume-match, matched web service capabilities are
subsumed by a goal; (iv) intersection-match, a goal and matched web service capa-
bilities have some elements in common; and (v) disjoint-match, a goal and matched
web service capabilities does not follow any of the previous definitions. Although
matching notions relax the identification of target web services, in a future scenario in
which thousands of services can potentially fulfill (or partially fulfill) the objectives
described in a goal, a fine-grained classification of matching notions may be neces-
sary for improving the degree of automation of the discovery process. One possible
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approach is to identify a degree of matching inside of each matching notion. Thus, if
we found one thousand web services that follow an intersection-match pattern, we
need to distinguish which are the web services that are closer to the goal requested
capability.

Brokers [5] bring another interesting approach to the problem of filtering the most
promising web services. Brokers are intermediate systems between clients and service
providers. They store web service capabilities and interfaces, execute matching proc-
esses for each goal that they have received, and manage the interaction between cli-
ents and selected web services. Thus after several interactions, brokers can gain valu-
able knowledge about which web services are providing a good service and which are
not. A quality of service historical record can help in the identification of promising
web services during the matching process executed in a broker.

Current Semantic Web services frameworks (e.g. OWL-S!, WSMO? and Meteor-
S3) use first order logic, description logics and logic programs to represent web ser-
vice and goal capabilities and execute matching processes mostly based on subsum-
tion checking or query-answering. In this article, we address the two problem areas
raised above as part of a novel architecture for service matching, based on the inci-
dence calculus. The incidence calculus [4] is a truth-functional probabilistic calculus
in which the probabilities of composite formulae are computed from intersections and
unions of the sets of worlds for which the atomic formulae hold true. Incidence Cal-
culus can be easily integrated with other logic formalisms like propositional logic and
logic programs and facilitate the implementation of a fine-grained matching mecha-
nism based on probabilities and quality of service records.

The experiments were executed on a platform called F-X [17], a modular formal
knowledge management system developed at University of Edinburgh. F-X has com-
mon roots with WSMO (both follows the main principles of UPML [3]), and can deal
with WSMO/OWL-S ontologies and web services that fall into DLP fragment [8].
We will show how to specify service capabilities in F-Broker, and how incidence
calculus can be nicely integrated

The paper is structured as follows: section 2 introduces semantic web services, F-
X and Incidence Calculus. In section 3, the key implementation efforts are described,
and testing results are discussed. Section 4 provides a short review of related work on
probabilistic logic in the Semantic Web. Finally, conclusions and future work are
included in section 5.

2 Preliminaries

Commonly in a Virtual Travel Agency scenario, customers require services in
terms of goals (for instance, “I want to book the cheapest flight and hotel available.
The destination is Galway and I want to go on the 4th of November and back to San
Francisco on the 9" of November”). Airline companies and hotels provide services

! http://www.daml.org/services/owl-s/
2 http://www.wsmo.org/
3 http:/Isdis.cs.uga.edu/projects/meteor-s/
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(“to book a flight please provides: origin, destination, departure date, return date,
valid passport id and credit-card”). The broker is the virtual travel agency that stores
service descriptions related with hotel and flights booking and attend requests from
customers. We will show in this section how F-X can become in an efficient virtual
travel agency for representing, storing and matching services. First we will introduce
F-Broker, the broker component, and then we will describe incidence calculus and
how this formalism can be integrated in F-Broker to improve its matching capabili-
ties.

2.1 F-Broker

F-Broker [17] is an automated broker mechanism of F-X with the responsibility to
identify the assemblies of knowledge components appropriate to a task we wish to
achieve. This information is specified using F-Comp. In a multi-agent environment,
agents advertise their competences (or capabilities, defined in the knowledge compo-
nents they contain) simply by sending these to F-Broker, which records the compe-
tences and the agents who claim to be able to supply them.

When other agent sends a query, the broker processes it, and constructs an internal
description, brokerable structure, based in the competences that previously it re-
corded which describes how the query might be answered. In the final stage the bro-
ker translates its brokerable structure into a sequence of performative statements
describing the messages that will be necessary to establish a communication with the
agents that can attend the query. The broker manages the communication between
agents (request and providers) sending and receiving messages which the appropriate
information to response the query [17].

[17] describes how capabilities and related brokerable structures are represented in
previous versions of F-X. Four forms of capability, C, each of which is implemented
within the expression cap (K, C) , denoting that the agent named K can deliver
capability, C in at least one instance or, if not, will signal failure. Valid options for C
are [17]:

— A unit goal of the form P (A , ..., A
are its arguments.

— A conjunctive goal of the form (C1A..ACm) , where each C, is a unit goal or a
set expression.

— A set expression of the form setof (X, C, S) , where C is either a unit goal or
a conjunctive goal; X is a tuple of variables appearing in C; and S is a set of in-
stances of those tuples which satisfy C.

— A conditional goal of the form C_<-C_, where C_ is a unit goal which the agent,
K, will attempt to satisfy (but will not guarantee to satisfy) if the condition, C_, is
satisfied. C_ is either a unit goal or a conjunctive goal.

) , where P is a predicate name and A ..., A

n n

Although for simplicity, we will use this version of the capability language, in later

versions of FX, capabilities are represented following the next pattern:
service (Agent, Uri, Ontology, [Servicel:-Preconditionsl, In-
putsl, Outputsl,Externalsl], [...],..., [...]1).
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A simple brokerable structure has the form c(K, C), where K is the name of the
agent which should be able to deliver the capability and C is a description of the
sources of the capability. C can be in any of the following forms [17]:

— A capability available directly from K.

— A term of the form ¢ (K, dg(Q,QC)), where Q is a capability obtainable
from K conditional on its other capabilities and QC describes how these capabili-
ties are obtained.

_ Aterm of the form ¢ (K, pdg(Q,QC,QP) ), where Q is a capability obtainable
from K conditional on its other capabilities and on capabilities external to K, and
QC and QP describe how these internal and external capabilities (respectively) are
obtained.

— A term of the form ¢ (conj, co(CQ1,CQ2)), where CQ1 and CQ2 are two
capability structures which must jointly be satisfied.

_ Atermofthe formc (K, cn(Q, G, c(K1,Q1))), where K1 is the name of
an agent different from K which allows capability structure Q to be delivered in
combination with capability structure Q1 provided that the correspondence con-
straints given by G are satisfiable.

Given a query posed by a client, a broker tries to find all the possible ways in which
agents which have advertised their capabilities might be contacted in order to satisfy
that query. It is necessary a formal representation of this sort of combination of capa-
bilities, for which we use what we call a brokerage structure, of the form c (K, C),
where K is the name of the agent which should be able to deliver the capability and C
is a description of the sources of the capability. C can be in any of the following
forms [17]*

e_broker(Q, Kn, c(K,Q))

broker (Q,c(K,Q)) «cap(K,Q) A not (K=Kn) .
<—cap (K, Q) . e broker (Q, Kn, c(K, dg(Q,0C)))
broker(Q, c(K, dq(Q,QC))) «cap (K, (Q«C)) A not(K=Kn) A

«<cap (K, (Q«C)) A broker (C,QC) .
broker (C, QC) . e broker(Q, Kn, c(K1,

broker (Q, c(K1,pdg(Q,QC,QP))) pda (Q,QC,QP)))

«~p_cap(Kl, (Q«C), P) A <~p_cap(Kl, (Q«C), P) A
broker (C,QC) A not (K1=Kn) A broker (C,QC) A
e_broker (P,K1,QP) . e_broker (P,K1,QP) .

broker ((Q1,Q2), c(conj, e _broker((Q1,Q2), Kn, c(conj,
co(CQ1,CQ2))) co(CQ1l, CQ2)))

«<broker (Q1,CQ1) A <e_broker (Q1,Kn,CQ1l) A
broker (Q2,CQ2) . e broker (Q2,Kn,CQ2) .

broker (Q2, c(K2, cn(Q2, G, e_broker (Q2, Kn, c(Kn, cn(Q2, G,
c(K1,BQ)))) c(K1,BQ))))

<«~corr(K1,Q1,K2,0Q02,G) A <«corr(K1,Q1,Kn,Q2,G) A
Broker (Q1, c(K1,BQ)). broker (Q1, c(K1,BQ)).

4 “corr” represents a correspondence, the equivalent of a bridge in UPML [3].
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2.3 Incidence Calculus

Bundy [4] demonstrated that purely numeric probabilistic formalism can derive
into contradictory results during the calculation of an uncertainty measure of complex
formula. The key result of his analysis is that in general P (AAB) ®P (A) *P (B).

Incidence Calculus [4] reviews the notions of probability theory and introduces an
important novelty: “the probability of a sentence is based on a sample space of ele-
ments. Each element defines a situation in a possible world where a sentence can be
true or false. The sample space, T, contains an exhaustive and disjoint set of elements
that for computational reasons should be finite”.

The incidence of a sentence A, i(A), is the subset of W in which sentence A is true.
The dependence or independence of two sentences, A and B, is defined by the
amount of common points of the result of the intersection between their incidences,
i(A) Ni(B) .

The axioms of Incidence Calculus [4] associate a set of theoretic function with
each connective, propositional constant and quantifier of Predicate (Propositional)
Logic so that the incidence of a complex sentence can be calculated from the inci-
dences of its sub-sentences. The probabilities of composite formulae are computed
from intersections and unions of the sets of worlds for which the atomic formulae
hold true. Bundy called the resulting system Predicate (Propositional) Incidence
Logic [4]:

i(T) ={} i) ={
i(A)  =i(A) i(=A)  =i(T\i(A)
i(AAB) =i(A)ni(B) i(AVB) =i(A)Ui(B)

i(A>B) = i(=AVB) = (i(T)\ i(A))Ui(B)

Thus, probabilities are calculated in the following way [4]:
P(M=i(T)[ =1 P(L)=i(L)[=0
P(A)=[i(A)[ / [i((T)| P(=A)=1-[i(A)[ / [i(T)|
P(AAB) =[i(A)ni(B)|/ [i(T)|

P(AVB) = ([i(A) Wi(B)| - [i(A)Ni(B)]) / [i(T)]

P(AB) = [i(A)ni(B)] / [ i(B)|

As an illustration, consider the following set of incidences describing the weather
of a given week adopted from [4]:

Suppose there are two propositions, P={rainy, windy} and seven possible worlds,
T ={sunday, monday, tuesday, wednesday, thursday, friday, saturday}. Suppose that
each possible world is equally probable (i.e. 1/7), and we learn that rainy is true in
four possible worlds (friday, saturday, sunday and monday) and windy is true in
three possible worlds (Monday, wednesday and Friday). Therefore, we can derivate
the following incidence sets [4]:

i(rainy) = {friday, saturday, sunday, monday}

i(windy)= {monday,wednesday, friday}

i(windyArainy)= {monday, friday}

Moreover, we can calculate their probabilities in the following way:
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P(rainy) = |i(rainy)| / [i(T)|=4/7
P(windy) = |i(windy)| / [i(T)|=3/7
P(windyArainy)= | i(windy)Ni(rainy)| / [i(T)|=2/7

2.3 Travel Agency example, writing capabilities in F-Broker

For simplicity we will use the capability language of an earlier version of F-Broker
presented in [17]. We extend the capability language to store in a list the number of
incidences in which each atomic capability was execute successfully (a client used
this service for a given goal). Initially the set of incidences is empty and after several
computations the broker is populating the sets of incidences according with the re-
sults in the requests attended. For our traveling scenario capabilities, we can model
the services related with an airline company in the following way:

n_requests = [1,2,3,4,5, .., 320].

p_capability(airline_aa, ((book_ flight (Person, Flight, Ori-
gin, Destination, DepartureDate, ArrivalDate, PurchaseOrder,
Price, Currency, PaymentMethod) :- flight (Flight, Origin,

Destination, DepartureDate, ArrivalDate, Price, Currency)),
pay_order (Person, Nationality, PurchaseOrder, Price, Cur-
rency, PaymentMethod))).

capability(airline aa, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency), [3,4,5, ..,
3011) .

capability(airline ib, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency), [1,2, ..,
319]1) .

capability(airline ba, (flight(Flight, Origin, Destination,
DepartureDate, ArrivalDate, Price, Currency) [6,7, .. , 318).

p_capability(financial_vs, pay order (Person, PurchaseOrder,
Price, Currency, PaymentMethod) :-

has_money (Person, Price, Currency, PaymentMethod),

has passport (Person, Nationality))).

capability(financial_ vs,, has_money(Person, Price, Currency,
PaymentMethod), [2,3,4, .. , 315]).

capability(financial ms,, has_ money (Person, Price, Currency,
PaymentMethod), [5,6 .. , 320]).

capability(financial amex,, has_money (Person, Price, Currency,

PaymentMethod) [100,105, .., 255]).
capability(police, has passport (Person, Nationality), [3,4,5,
, 301]1).
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3 Implementation and Results

We present a set of extensions in F-X to allow the system to deal with many OWL-
S service profiles, take advantage of a probabilistic mechanism based on Incidence
Calculus and relax the matching process.

3.1 From Description Logics to Description Logic Programs.

One of the objectives of the implementation was to test F-Broker with real exam-
ples of Semantic Web Services descriptions and also to integrate it in an industrial
standard in order to find possible business applications. Many web services are anno-
tated using DAML-S Service Profile descriptions. So we thought that it could be a
good idea to provide a translator that semi-automatically converts services descrip-
tions from DAML-S into F-Broker Service Description Language (SDL). One of the
difficulties is how to translate DL logical statements into Prolog statements.

Description Logic Programs (DLP)[8], is an expressive fragment of the intersec-
tion of Description Logics (DL) [2] and Logic Programs (LP) [13]. An important
result of the development of this formalism is DLP-fusion, a bidirectional translation
of premises and inferences from DLP fragment of DL to LP, and vice versa from
DLP fragment of LP to DL that allows Prolog to describe on expressive subset of DL.
The implementation of DLP-Fusion in Prolog is straightforward [14] and with this
translator F-Broker is able to import and export knowledge represented using De-
scription Logics.

3.2 Extending matching algorithm

This section describes the necessary extensions to the matching algorithm of F-
Broker in order to incorporate subsumption reasoning, matching notions (exact, plug-
in, subsume, intersection and disjoint), a fine-grained degree of matching for some of
these matching notions, and finally a evaluation algorithm based on historical records.
We follow a bottom-up approach in which any new functionality is tested before we
continue with the implementations of new refinements.

Subsumption reasoning. A Meta-interpreter for a language is an interpreter for
the language written in the language itself [20]. Meta-interpreters are powerful tools
that were widely used for implementing the inference engines of many expert sys-
tems. Using these features the programmers can modify the behaviour of the inter-
preter of the language. Goal reduction is the best known and most widely used meta—
interpreter that in Prolog is called Vanilla [20]. Vanilla does not support subsumption.
So, the first step during the implementation process was the integration of substitution
of vanilla meta-interpreter by the simple subsumption meta-interpreter. The integra-
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tion of the subsumption mechanism with the brokering algorithm is very simple. It is
only to add a clause subs in any of the brokerable predicates that compound the bro-

kering algorithm for subsumption checking of terms:
brokerable(Q, c(S,Q)) :-
capability (S, Q1),
subs (Q1,Q) .

Matching notions. The algorithm that evaluates the degree of matching basically
compares two lists of terms that belong to a web service capability and a goal, verifies
the number of common and no common terms, determines the appropriate notion of
matching following the previous classification and returns a value with the notion of
matching identified. According to the view described in [10], abstract services and
goals are both represented as sets of objects during the service discovery step. Thus,
the calculation of the notion of match can be naturally calculated using incidence
calculus. The implementation is also simple. We substitute the subsumption clause in
the brokerable predicates implemented before for a new clause that call a new algo-
rithm that evaluates and return the notion of match between a capability and goal:

brokerable (Q, ¢ (S,Q,Nmatch)) :-
capability (S, Q1),
matchingnotion(Q1l,Q,Nmatch),
Nmatch<>”"disjoint”.

Instead of carrying out strings like “disjoint” or “exact”, it should be interesting to
carry numeric values that can be reused for the calculation of a joint probability of
several composed services.

Degree of matching notion. The previous algorithm can be improved by using a
degree of matching that qualified the goodness of the matching notion identified. To
do this, we include a new return variable in the matchingnotion predicate with the
value that the incidence calculus algorithm calculates during the evaluation of com-
mon terms between capability and goal.

brokerable (Q, c(S,Q,Nmatch, Dmatch)) :-
capability (S, Q1),
matchingnotion(Ql,Q,Nmatch, Dmatch),
Nmatch<>”disjoint”.

Evaluation of historical records. The proposal described in the current section
focus the evaluation of the brokerable structures according to an historical record of
previous goals. Associated with any atomic service capability there is a list of suc-
cessful previous goals. This notion of a set of points (previous goals) fits perfectly
with the probabilistic mechanism Incidence Calculus introduced in the previous sec-
tion. In this case, the implementation requires the modification the atomic capabilities
that have to maintain a list of values:

brokerable(Q, c(S, Q, L)) :-
capability (S, Q1, L),
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A predicate called evaluate finds all the possible broker structures that can satis-
fied a request and evaluate the different structures according with the information of
the history record. During the interaction with the client, the broker should modify the
set of previous request of the service that successfully attend the demand of the client:

| ?— evaluate(time(T), L).
L = [c(sd,time( A),[1,2]),2/4] ?
yes

3.3 Discussion

The extended version of F-Broker was tested with a modified version of the eco-
logic knowledge base [19] and slightly adapted versions of several web services ex-
amples from DAML?, Mindswap® and Carnegie-Mellon’. [14] shows that the use of
incidence calculus does not make significantly worse the performances of the broker
with respect to the original version of F-Broker, and the relaxation of the matching
process and the filtering of services based on a list of previous experiences of goals
improve the matching abilities of the matching algorithm.

In [11] the use of incidence calculus was tested with a more advanced version of
F-Broker that includes a lightweight coordination calculus (LCC) [16], a method for
specifying agent interaction protocols. Lambert and Robertson use incidence calculus
for the evaluation of services based on an historical record. The use of incidence
calculus clearly helps to identify most promising services and thus satisfied client
goals more efficiently.

[14] identified an important limitation of the use of incidence calculus to evaluate
web services based on an historical record of previous goals. This is the incapacity of
the system to handle the changes that the environment undergoes in a specific periods
of time. For instance, the provider of a service with a large and excellent history re-
cord can fall. Any request of the clients that asks for this service will be processed by
the broker and the answer will include the service that the provider cannot supply.
After many requests another service could overcome the re-cord of the unavailable
service, but before this moment the broker will try to execute the wrong service.

4 Related Work

The use of probabilistic logic in the context of the Semantic Web has not been ex-
plored in detail. Even the inventor of the Semantic Web, Sir Tim Berners-Lee, men-
tioned during the dev day lunchtime session at WWW2004 conference?, that the Se-

S http:// www .daml.org/services/examples.html

6 http://www.mindswap.org/2002/services/

7 http://www. daml.ri.cmu.edu/ont/TaskModeler/TMont-index.html# Request Realtorl
8 http://esw.w3.org/mt/esw/archives/000055.html
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mantic Web stack does not need a representation of uncertainty. The first serious
attempt to incorporate probabilistic reasoning in the Semantic Web was done with P-
SHOQ[18]. Unfortunately, this work was not taken into consideration by the Seman-
tic Web Community. A detailed description of an early version of this work can be
found in my master thesis, "Dealing with uncertainty in semantic web services" [14].
This work was the first attempt to incorporate incidence calculus in a broker for se-
mantic web services. [11] based on this previous experience incorporates the use of
incidence calculus in an advance version of F-Broker that includes a lightweight
coordination calculus (LCC) [16], a method for specifying agent interaction proto-
cols.

5 Conclusions and Future Work

The relaxation of the matching process and the evaluation web service capabilities
based on a previous historical record of successful executions show the feasibility of
the use of probabilistic logic in Semantic Web services. Uncertainty is present in
functional aspects of Web Services like discovery, composition, interoperation, me-
diation, monitoring and compensation [1]. In this paper, we focused only in discov-
ery, and in [14], composition is also studied.

Incidence calculus was an excellent choice because its simplicity, rigor and com-
patibility with other classical logic formalisms. F-Broker provides an excellent test
platform for the evaluation of incidence calculus in semantic web services. Although
simple, F-Broker provides all basic functionality of a broker and allows the composi-
tion of web services capabilities and the execution of services based on an elementary
vocabulary inspired in KQML. The code is very compact and clean, and new exten-
sions are easily to include.

Future work will concentrate in the migration of the test platform to more realistic
scenarios and the evaluation of other probabilistic logic formalism that combines
logic programming with description logics.
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Abstract. Ontology Learning from text aims at generating domain ontologies
from textual resources by applying natural language processing and machine
learning techniques. It is inherent in the ontology learning process that the ac-
quired ontologies represent uncertain and possibly contradicting knowledge. From
a logical perspective, the learned ontologies are potentially inconsistent knowl-
edge bases that thus do not allow meaningful reasoning directly. In this paper we
present an approach to generate consistent OWL ontologies from learned ontol-
ogy models by taking the uncertainty of the knowledge into account. We further
present evaluation results from experiments with ontologies learned from a Digi-
tal Library.

1 Introduction

Ontology Learning from text aims at generating domain ontologies from a given collec-
tion of textual resources by applying natural language processing and machine learning
techniques. Due to an increasing demand for efficient support in knowledge acquisi-
tion, a number of tools for automatic or semi-automatic ontology learning have been
developed during the last years. Common to all of them is the need for handling the
uncertainty which is inherent in any kind of knowledge acquisition process. Moreover,
ontology-based applications which rely on learned ontologies have to face the challenge
of reasoning with large amounts of imperfect information resulting from automatic on-
tology generation systems.

Causes for the imperfection of information can be found thrice. According to [1]
imperfection can be due to imprecision, inconsistency or uncertainty. Imprecision and
inconsistency are properties of the information itself - either more than one world (in
the case of ambiguous, vague or approximate information) or no world (if contradictory
conclusions can be derived from the information) is compatible with the given informa-
tion. Uncertainty means that an agent, i.e. a computer or a human, has only partial
knowledge about the truth value of a given piece of information. One can distinguish
between objective and subjective uncertainty. Whereas objective uncertainty relates to
randomness referring to the propensity or disposition of something to be true, subjec-
tive uncertainty depends on an agent’s opinion about the truth value of information. In
particular, the agent can consider information as unreliable or irrelevant.

In ontology learning, (subjective) uncertainty is the most prominent form of imper-
fection. This is due to the fact that the results of the different algorithms have to be
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considered as unreliable or irrelevant due to imprecision and errors introduced during
the ontology generation process. There exist different approaches for the representa-
tion of uncertainty: Uncertainty can for example be represented as part of the learned
ontologies, e.g. using probabilistic extensions to the target knowledge representation
formalism, or at a meta-level as application-specific information associated with the
learned structures.

In Text20nto [7], a framework for ontology learning and data-driven ontology evo-
lution, we follow a slightly different approach: In a first step, we apply ontology learn-
ing algorithms to generate ontologies based on a Learned Ontology Model (LOM),
which is independent of a concrete ontology representation language. In the LOM, we
represent uncertainty as annotations capturing the confidence about the correctness of
the ontology elements. Most importantly, since the LOM does not have any logical se-
mantics, in this step we do not have to consider logical inconsistencies which are often
introduced during the ontology learning process. In a second step, we transform the
LOM model to a standard logic-based ontology language, in order to be able to apply
standard reasoning over the learned ontologies (e.g. for query answering). In our work
we build on the OWL ontology language, as it is now the standard for representing on-
tologies on the web, and — with its grounding in Description Logics — reasoning with
OWL ontologies is very well understood and tractable. Because of the uncertain and
thus potentially contradicting information in the LOM models, a naive translation of
the LOM model to OWL would result in highly inconsistent ontologies, which do not
allow meaningful reasoning. We therefore make use of the confidence annotations of
the LOM to guide the transformation process.

An obvious alternative approach to dealing with potential inconsistencies is to pro-
hibit primitives that introduce inconsistencies in the first place (e.g. negation, disjoint-
ness). However, as shown in [21], semantically rich primitives such as disjointness of
concepts can be used for effective semantic clarification in ontologies and thus enables
to draw more meaningful conclusions.

As a main contribution of this work we present a transformation that results in an
ontology that is (1) consistent and (2) “most likely correct”, relying on the certainty
information of the LOM model. The transformation is based on the notion of an evalu-
ation function that measures the quality of ontologies with respect to given criteria, i.e.
in our case consistency and certainty.

Application Scenario Intelligent search over document corpora in Digital Libraries is
one application scenario that shows the immediate benefit of the ability to reason over
ontologies automatically learned from text. While search in Digital Libraries nowa-
days is restricted to structured queries against the bibliographic metadata (author, title,
etc.) and to unstructured keyword-based queries over the full text documents, complex
queries that involve reasoning over the knowledge present in the documents are not
possible. Ontology learning enables obtaining the required formal representations of
the knowledge available in the corpus to be able to support such advanced types of
search. This application scenario is the subject of a case study within the Digital Li-
brary of BT (British Telecom) as part of the SEKT' project. One of the key elements

! http://www.sekt-project.com/
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of the case study is to automatically learn ontologies to enhance search and finally be
able support queries of the kind “Find knowledge management applications that sup-
port Peer-to-Peer knowledge sharing.” To validate the work the presented in this paper,
we performed experiments with data from the BT Digital Library.

Overview of the paper The rest of the paper is organized as follows. In Section 2
we recapitulate the foundations of the OWL ontology language, query answering with
OWL ontologies and the role of logical inconsistencies. In Section 3 we introduce the
Learned Ontology Model (LOM). In Section 4 we discuss the transformation of LOM
models to OWL ontologies. We discuss experimental results in Section 5 and present
related work in Section 6 before we conclude in Section 7.

2 Reasoning with OWL

In this section we provide on overview of the OWL ontology language (specifically
OWL-DL), typical reasoning tasks and show why standard reasoning with inconsistent
ontologies does not yield meaningful results.

OWL-DL is a syntactic variant of the SHOZN (D) description logic [15]. Hence,
although several syntaxes for OWL-DL exist, in this paper we use the traditional de-
scription logic notation since it is more compact.

Definition 1 (Ontology). We use a datatype theory D, a set of concept names N¢, sets
of abstract and concrete individuals N1, and N, respectively, and sets of abstract and
concrete role names N, and Ny, respectively.

The set of SHOIN (D) concepts is defined by the following syntactic rules, where
A is an atomic concept, R is an abstract role, S is an abstract simple role, T(Z-) are
concrete roles, d is a concrete domain predicate, a; and c; are abstract and concrete
individuals, respectively, and n is a non-negative integer:

C—A|-C|CinCy|CiUCy |3R.C|VR.C|2>nS|<nS|{ai,...,an} |
|>nT |<nT|3MN,...,7,.D|VT1,...,T,.D
D —d|{c1,...,cn}

A SHOIN (D) ontology O is a finite set of axioms of the form concept inclusion ax-
ioms C' T D, for C and D concepts, transitivity axioms Trans(R), role inclusion ax-
ioms R T S and T T U, concept assertions C(a), role assertions R(a,b), individual
(in)equalities a =~ b, and a % b, respectively.

The semantics of the SHOZN (D) description logic is defined via a model-theoretic
semantics, which explicates the relationship between the language syntax and the model
of a domain: An interpretation I = (A, -T) consists of a domain set A, disjoint from
the datatype domain AL, and an interpretation function -/, which maps from individ-
uals, concepts and roles to elements of the domain, subsets of the domain and binary
relations on the domain, respectively?. An interpretation Z satisfies an ontology O, if it

% For a complete definition of the interpretation, we refer the reader to [15].
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satisfies each axiom in O. Axioms thus result in semantic conditions on the interpreta-
tions. Consequently, contradicting axioms will allow no possible interpretations. This
leads us to the definition of a consistent ontology:

Definition 2 (Consistent Ontology). An ontology O is consistent iff O is satisfiable,
i.e. if O has a model.

To be able to define queries against ontologies, we rely on the notion of entailment:
We use O = « to denote that the ontology O entails the axiom « (alternatively, we say
that «v is a consequence of the ontology O), iff « holds in any model in which O holds.

Definition 3 (Query and Query Answer). A query with respect to an entailment rela-
tion = is a pair of an ontology O and an axiom «, written O |= «?’. An answer to a
query "O |= a?’ is a value in the set {true, false} as O = a and O [~ « respectively.

Standard entailment as defined above is explosive, i.e. any axiom is a consequence
of an inconsistent ontology. Namely, if an ontology O is not consistent, then for any
axiom a, O = «. In other words, query answers for inconsistent ontologies are com-
pletely meaniningless, as for any query the query answer will be true. For a detailed
discussion on inconsistencies in OWL ontologies, we refer the reader to [13].

3 LOM - A Learned Ontology Model

We believe, that linguistic evidence with respect to an ontology can be appropriately
measured by ontology learning techniques which try to capture the ontological com-
mitment in human language. Since ontology learning algorithms such as implemented
in TextToOnto [7] consider the relation of individual ontology elements with the data
the ontology has been engineered from, they allow to assess how well the ontology
reflects the underlying corpus of data. This is especially relevant for an application sce-
nario as introduced in Section 1, which involves question answering in the context of a
Digital Library. In the following we describe the ontology model of Text2Onto and the
ontology learning algorithms used in our approach.

A Learned Ontology Model (LOM) as used by Text2Onto is a collection of instan-
tiated modeling primitives which are independent of a concrete ontology representation
language. These primitives are defined in a declarative fashion which allows for trans-
lating the LOM into any knowledge representation language as long as the expressivity
of the primitives does not exceed the expressivity of the target language. In Text2Onto
we follow a translation-based approach to knowledge engineering. So called ontology
writers are then responsible for translating instantiated modeling primitives into a spe-
cific target knowledge representation language. While a translation to various ontology
languages is possible, in the scope of this paper, we focus on the translation to OWL
ontologies. The modeling primitives we use in Text2Onto and their correspondences in
the OWL ontology model are described by Table 1.

To capture contextual information about ontology elements, such as provenance and
certainty in the learning process, we introduce the notion of rating annotations.
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Modeling Primitive |Explanation [ OWL ‘

concept A concept C. C
Example: man, person

instance An instance a. a
Example: John, Mary

subconcept-of |Concept inheritance. Ci1C O,
Example: subconcept-of(man,person)

instance-of |Concept instantiation. C(a)
Example: instance-of(John,person).

relation A relation R between C7 and Co. Ci1 CVR.Cy
Example: 1love(person,person)

part-of Mereological part-whole relation between C and Cs.|part-of(C1, C2)
Example: part-of(wheel,car)

equivalence |Equivalence of concepts C1 and Cb. Cr=0Cs
Example: equivalence(town,city)

equality Equality of instances a1 and as. a1 ~ a2
Example: equality(UN,United Nations)

disjointness |Disjointness of concepts Cy and Cs. Ci CE =Cs
Example: disjointness(man,woman)

Table 1. LOM Modeling Primitives

Definition 4. Let N denote the set of all possible ontology elements and X be a suit-
able representation of a context space, then an ontology rating annotation is a partial
functionr : N — X.

In Text2Onto we use these rating annotations to model the certainty of the system
about the correctness of a particular ontology element. In particular, we define a special
ontology rating annotation

Teonf : N — [0, 1]

to indicate how confident the system is about the correctness of an ontology element.
The confidences are calculated based on different kinds of evidences provided by the
ontology learning algorithms that indicate the correctness and the relevance of ontology
elements for the domain in question. They can be considered as a corpus-based support
for ontology elements.

Algorithms We now describe for each modeling primitive the algorithms used to
learn corresponding instances thereof. In particular, we explain the way the confidence
and relevance ratings for an instantiated modeling primitive are calculated.

Concepts and Instances Different term weighting measures are used to compute
the relevance of a certain concept or instance with respect to the corpus: Relative Term
Frequency (RTF), TFIDF, Entropy and the C-value/NC-value method in [17].

Subconcept-of Relations In order to learn subconcept-of relations, we have imple-
mented a variety of different algorithms exploiting the hypernym structure of WordNet
[11], matching Hearst patterns [14] in the corpus as well as in the WWW and applying
linguistic heuristics mentioned in [24]. The resulting confidence values of these algo-
rithms are then combined through combination strategies as described in [6].

Instance-of Relations In order to assign instances or named entities appearing in
the corpus to a concept in the ontology Text2Onto relies on a similarity-based approach
extracting context vectors for instances and concepts from the text collection and as-
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signing instances to the concept corresponding to the vector with the highest similar-
ity with respect to their own vector [8]. Alternatively, we also implemented a pattern-
matching algorithm similar to the one used for discovering part-of relations.

General Relations To learn general relations, Text20Onto employs a shallow pars-
ing strategy to extract subcategorization frames (e.g. hit (subj,obj,pp(with)),
transitive + PP-complement) enriched with information about the frequency of the terms
appearing as arguments [19]. These subcategorization frames are mapped to relations
such as hit(person,thing) and hit _with(person,object). The confidence is estimated
on the basis of the frequency of the subcategorization frame as well as of the frequency
with which a certain term appears at the argument position. For the purpose of dis-
covering part-of relations in the corpus, we developed regular expressions matching
lexico-syntactic patterns as described in [5] and implemented an algorithm counting the
occurrences of patterns indicating a part-of relation between two terms ¢; and %o, i.e.
part-of(¢1,t2). The confidence is then calculated by dividing by the sum of occurrences
of patterns in which ¢; appears as a part. The results are combined with confidences
which can be acquired by consulting WordNet for mereological relations.

Equivalence and Equality Following the assumption that terms are similar to the
extent to which they share similar syntactic contexts, we implemented algorithms cal-
culating the similarity between terms on the basis of contextual features extracted from
the corpus, whereby the context of a terms varies from simple word windows to linguis-
tic features extracted with a shallow parser. This corpus-based similarity is then taken
as the confidence for the equivalence of the corresponding concepts or instances.

Disjointness For the extraction of disjointness axioms we implemented a simple
heuristic based on lexico-syntactic patterns. In particular, given an enumeration of noun
phrases N P;, N Py, ...(and|or)N P,, we conclude that the concepts C1, Cs, ...C}, de-
noted by these noun phrases are pairwise disjoint, where the confidence for the dis-
jointness of two concepts is obtained from the number of evidences found for their
disjointness in relation to the total number of evidences for the disjointness of these
concepts with other concepts.

4 Transforming Learned Ontologies to OWL

In this section we discuss the transformation of learned ontologies as described in the
previous section to OWL ontologies (c.f. Section 2). As mentioned before, a naive trans-
lation that simply disregards the certainty information (rating annotations) would result
in a potentially highly inconsistent knowledge base that would not allow meaningful
reasoning. The goal of the transformation therefore is to obtain an ontology that is (1)
consistent (to allow meaningful reasoning), and (2) captures the most certain informa-
tion while disregarding the potentially erronous information. In general, there may be
many different consistent ontologies obtained from a LOM. The difficulty is to select
the “best” ontology, i.e. the one that will result in most meaningful reasoning.

Evaluation Function In order to able to define what a “good” ontology for a particular

context is, we need to be able to measure the quality of the ontology with respect to
given set of criteria. We therefore define the notion of an ontology evaluation function.
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Definition 5. Let O be the set of possible ontologies, then an ontology evaluation func-
tion e is a function e : O — [0, 1].

Effectively, the evaluation function provides a total order over the space of possible
ontologies and thus allows to compare given ontologies. Here it is important to note that
the evaluation function can take the rating annotations into account and thus provides
an evaluation measure for a given context. Using the evaluation function, we can define
the problem of translating a given learned ontology LOM to a “discrete” and consistent
OWL ontology as: mazocrom €(O).

In other words, we try to find the best ontology O based on the knowledge in LOM
that maximizes the evaluation function.

For our particular goal to obtain a consistent ontology capturing the most certain
information, we can define an evaluation function as follows:

()—t
Teon f(Q)— . . .
max (%, 0) if O is consistent

0 if O is inconsistent

ey

Ecertainty (O) =

Let us discuss the intuition behind this function. The basic idea is to maximize the
certainty of the ontology based on the confidence of its individual axioms, as given by
Tconf (). The threshold ¢ is introduced to “filter out” axioms with a confidence below a
minimal value: Adding an axiom with a confidence below ¢ will thus decrease the value
of ontology. An inconsistent ontology is defined to have “no value”.

In general, it will be hard to determine the optimal ontology that maximizes the
evaluation function, as one theoretically would need to search entire space of possible
consistent ontologies. However, in most cases it is not necessary to prove the optimality
of an obtained solution, especially when considering that the rating annotations them-
selves are already somewhat imprecise. Instead it is possible to exploit heuristics to
obtain a “fairly”” optimal ontology.

We now outline an algorithm that exploits the behavior of the evaluation function
and local characteristics of inconsistencies to maximize the value. It is based on the
ideas of consistent ontology evolution as presented in [12]. Consistent ontology evolu-
tion ensures the consistency of ontologies when the ontology is changed by mapping
consistency conditions that need to be satisfied to resolution functions that resolve in-
troduced inconsistencies. The task of the resolution function consists of two main steps:
(1) localizing the inconsistency and (2) generating additional changes that lead to an-
other consistent state.

We treat the transformation of a LOM ontology to a consistent OWL ontology in
a similar way as shown in Algorithm 1: Starting with an empty ontology O, we incre-
mentally add all axioms from the learned ontology LO M whose confidence is equal to
or greater than the threshold ¢. If adding the axioms leads to an inconsistent ontology,
we localize the inconsistency by identifying a minimal inconsistent subontology. (For
the details of this procedure, we refer the reader to [12]). An ontology O’ is a mini-
mal inconsistent subontology of O, if O’ and every subontology of O’ is consistent.
Within this minimal inconsistent subontology we then identify the axiom that is most
uncertain, i.e. has the lowest confidence value. This axiom will be removed from the
ontology, thus resolving the inconsistency.
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Algorithm 1 Algorithm for Transforming a LOM into a consistent OWL ontology
Require: A learned Ontology LOM

1: 0:=10

2: forall« € LOM, 7cony(a) > t do

3: O :=0U{a}

4. while O is inconsistent do

5: O’ := minimal_inconsistent_subontology (O, &)
6: a =«

7: for all o’ € O’ do

8: if 7conf(a’) < Teons(c) then
9: o =a
10: end if
11: end for
12 O0:=0\{a}
13: end while
14: end for

5 Evaluation and Experimental Results

We have applied the approach presented in the previous chapter to ontologies learned
from a corpus of 1700 abstracts (from documents about knowledge management) of
the BT Digital Library. The learned ontology (LOM) consisted of 938 concepts and
125 instances. For the concepts, 406 subconcept-of relations and 2322 disjoint-concepts
relations were identified. For the instances, 143 instance-of relations were obtained (as
multiple instantiations is allowed).

For the transformation of the LOM ontology to a discrete OWL ontology, we ap-
plied the evaluation function and algorithms presented in the previous section. Here we
performed an analysis of the influence of the threshold of uncertainty on the transforma-
tion. The results in Table 2 clearly show the connection between the level of uncertainty
and inconsistency introduced:

lThreshold t[# of Inconsistencies |# of Axioms in Result

0.1 40 1706
0.2 8 705
04 3 389
0.8 0 197

Table 2. Influence of certainty threshold ¢ on transformation process

A low threshold ¢ results in more uncertain information being allowed in the tar-
get ontology. As a result, the chances for inconsistencies increase. How to choose the
“right” threshold ¢ for the transformation process will very much depend on the ap-
plication scenario, as it essentially means finding a trade-off between the amount of
information learned and the confidence in the correctness of the learned information.

In the following we will discuss typical types of inconsistencies and present exam-
ples of such inconsistencies that were detected and resolved. The first type of inconsis-
tency involves unsatisfiable concepts (often called incoherent concepts) in the 7 -Box of
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the ontology. This can for example happen if two concepts are identified to be disjoint,
but at the same time these concepts are in a subconcept-relation (either explicitly as-
serted or inferred). Interestingly, this type of inconsistency often occurred for concepts
for which even for a domain expert the correct relationship is hard to identify, as the
following example shows:

Example 1. The relationship between the concepts Data, Information, and Knowledge
is a very subtle (often philosophical) one, for which one will encounter different defi-
nitions depending on the context. The (inconsistent) definitions learned from our data
set stated that Data is a subconcept of both Information and Knowledge, while
Information and Knowledge are disjoint concepts:

Axiom t Confidence
Data C Information 1.0
Data C Knowledge 1.0
Information C ~Knowledge 0.7

The inconsistency was resolved by removing the disjointness axiom, as its confidence
value was lowest.

The second type of inconsistencies involves .A-Box assertions. Here, typically instances
were asserted to be instances of two concepts that were identified to be disjoint. We
again present an example:

Example 2. Here KaViDo was identified to be both an instance of Application and a
Tool (based on the abstract of [23]), however, Application and T ool were learned to
be disjoint concepts:

Axiom ¢ Confidence
Application(kavido) 0.46
T ool (kavido) 0.46
Tool C —Application 0.3

This inconsistency was again resolved by removing the disjointness axiom.

Other types of inconsistencies involving, for example, domain and range restrictions
were not considered in our current experiments, thus being left for future work. Nev-
ertheless, this evaluation showed that inconsistency is an important issue in ontology
learning.

6 Related Work

Since building an ontology for a huge amount of data is a difficult and time consuming
task a number of tools such as TextToOnto [20], the ASIUM system [10], the Mo’k
Workbench [3], OntoLearn [24] or OntoLT [4] have been developed in order to sup-
port the user in constructing ontologies from a given set of (textual) data. So far, none
of these tools explicitly addresses the problem of uncertainty. Text20nto implements
the first approach towards integrating uncertainty into ontology learning. Obviously,
the LOM of Text2Onto is not probabilistic in a strict mathematical sense. Nevertheless,
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several researchers have already addressed the issue of integrating and reasoning with
probabilities in knowledge representation formalisms. [9] for example present a proba-
bilistic extension of the Ontology Language OWL which relies on Bayesian Networks
for reasoning. Other researchers have integrated probabilities into first-order logic [2]
or description logics [18]. Fuzzy extensions of OWL have been proposed e.g. in [22].
The approach to dealing with inconsistencies presented in this work is based on the
idea of obtaining a consistent ontology from a LOM to be then able to derive consistent
query answers. A very related approach is that of reasoning with inconsistent ontolo-
gies. A typical technique is the selection of a consistent subontology for a given query,
which yields a consistent query answer (c.f. [16]). The important question here is how
to select the right subontology. While current techniques often rely on syntactic selec-
tion functions, it would also be possible to rely on the rating annotations available in the
LOM to guide the selection function. Another related approach is that of diagnosis and
repair of inconsistencies based on techniques such as pinpointing [21]. The pinpointing
technique tries to identify and remove a minimal set of axioms (in terms of number of
axioms) to obtain a consistent ontology, while we try to identify the most certain con-
sistent ontology. As there are typically multiple possible pinpoints, a combination of
pinpointing with the notion of certainty of our work is an interesting path to explore.

7 Conclusion and Future Work

Ontology learning is a promising technique for automated knowledge acquisition from
text corpora. However, as we have shown, uncertainty and inconsistencies are issues
that need to be dealt with in order to allow meaningful reasoning over the learned on-
tologies. In this paper we have presented how uncertainty can be represented in the
Learned Ontology Model (LOM) and how such learned ontologies can be transformed
to consistent OWL ontologies using the notion of an ontology evaluation function. Our
experiments with ontologies learned from documents of a Digital Library show the fea-
sibility and usefulness of the approach. An extensive evaluation will be performed as
part of a case study within the SEKT project.

It is important to mention that confidence as generated by ontology learning algo-
rithms represent a data-driven approach to the evaluation of ontologies. There are many
other notions of ontology quality and consistency which could be used for the definition
of an ontology evolution function. In particular, we will in the future integrate an auto-
matic approach towards the formal evaluation of ontologies by means of the OntoClean
methodology as presented in [25].

Acknowledgements Research reported in this paper has been financed by the EU in the
IST project SEKT (IST-2003-506826) (http://www.sekt-project.com/).
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Abstract. A logical formalism to support the insertion of uncertain
concepts in formal ontologies is presented. It is based on the search of
extensions by means of two automated reasoning systems (ARS), and it
is driven by what we call cognitive entropy.

1 Introduction

The challenge of data management with logical trust arose from the statement
of the Semantic Web (SW). An important problem is the need for extending or
revising ontologies. Such task is, from the point of view of companies, dangerous
and expensive: since every change in ontology would affect the overall knowledge
of the organization. It is also hard to be automated, because some criteria for
revision cannot be fully formalized. Despite its importance, the tools designed
to facilitate the syntactic extension or ontological mapping do not analyze, in
general, their effect on the (automated) reasoning.

Our aim is to design tools for extending ontologies in a semi-automated way,
that is one of the problems present in several methods for cleaning data in
the SW, when it implies ontological revision (see e.g. [1] [3]). The method is
based on the preservation by extensions of the notion of ontology robustness [8].
(Lattice categoricity, described in sect. 3), is going to applied in a special case:
the change is induced by the user, who has detected the (cognitive) necessity of
adding a notion. That is, a vague concept which comprises a set of elements with
features roughly shaped by the existing concepts. In Ontological Engineering,
careful consideration should be paid to the accurate classification of objects: the
notion becomes a concept when its behaviour is constrained by new axioms that
relate it to the initial concepts. This scenario emphasises the current need for
an explanation of the reasoning behind cleaning programs. That is, a formalized
explanation of the decisions made by systems. Note that such explanations are
necessary for the desirable design of logical algorithms to be used by general-
purpose cleaning agents [4]. It is evident that the task will need not only specific
ARSs for SW, but also those for general purpose. The reason is that some tasks
are not directly related to reasoning services for the SW [2] [16] [8]. Among the

* This work is partially supported by the project TIN2004-03884 of Spanish Ministry
of Education and Science, cofinanced by FEDER founds.
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challenges the problem raises in a dynamic setting as the SW, there are three
of them which are specially interesting from the point of view of automated
reasoning. They seem to obstruct the design of a fully formalised methodology
[4] from classical database field:

— We can not suppose the database to be stable (because new facts could be
added in the future).

— Usually, specification of ontology is syntactically complex, so it is very likely
that classical axiomatization of database theory becomes inconsistent, even
if ontology itself is consistent.

— It is possible that the database does not contain facts about the whole rela-
tions of the language.

However, some limitations can be solved weakening the requirements imposed
in both database and ontological reasoning [8] [2].

The method proposed is based on the assistance of two ARS, McCune’s OT-
TER and MACE4 (http://www-unix-mcs.anl.gov). The first one, OTTER, is
an automated theorem prover (ATP) based on resolution and support set strat-
egy. The program allows great autonomy: its auto2 mode suffices to find almost
every automated proof that have been required. The second one, MACEA4, is
an automatic model finder sharing formula syntax with OTTER. It is based on
Davis-Putnam-Loveland-Longemann’s procedure to decide satisfiability. It has
been useful for analyzing the models of the involved theories.

Finally, it would be good to add some information about MACE4. Despite
it has not been formally verified to work correctly, once the result by MACE4
is determined, it is not difficult to certify that the models it gives are correct.
It is necessary to use OTTER to prove that the list of models is exhaustive.
Thus, MACE4 has been used as an automatic assistant to induce new results
and investigate the effect of diverse axiomatizations, which must be certified
later.

2 Logic-based ontological extensions

Once the need for revision is accepted, the task can be seen, up to some extent
-and specially when one designs her/his own logical theory-, from two points of
view. The first one considers it like a task similar to belief revision, analyzing
it by classic methods of AI. Nevertheless, the effort can be expensive, because
it must study once again the impact of revision on the foundational features of
the source ontology. The second one has a foundational character. The evolution
of ontology should obey ground principles which are accepted on this matter.
For example, preserving some sort of backward compatibility, if it is possible is
possible (extracted from [14]):

— The ontology should be able to extend other ontologies with new terms and
definitions.

— The revision of an ontology should not change the well-formedness of re-
sources that commit themselves to an earlier version of the ontology.
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However, such principles are more adequate if the source ontology is robust,
in the following sense [4]: An ontology is robust if its core is clear, stable (except
for extensions); if every model of its core exhibits similar properties w.r.t. the
core language, and if it is capable of admitting (minor) changes made out of the
core without commiting core consistency. By core we understand a portion of
ontology that we consider as a sound theory with well known properties, and
which is accepted as the best for the concepts involved. We can consider two
kinds of extensions:

— Extension by definition. Is produces conservative extensions. If definitions
are not provided for the new elements, conservation can fail.

— Ontological insertion: Essentially new (nondefinable) concepts/relations are
inserted. The task is to design good axioms to specify the new ones from
core theory.

An interesting case occurs in the task of ATP-aided cleaning of logic databases.
The bottom-up change generation in ontologies -due to the analysis of track
interaction among the Knowledge Base, the ATP and the user- induces ontolo-
gical revision. It can simulate new elements in ontology to be inserted (such as
Skolem noise [2]). We analyze here a slightly different problem, which appears
when the user is the person who decides to insert a new concept by collecting a
set of data.

The extension by definition is the basis of definitional methodologies for build-
ing formal ontologies. It is based on the following principles [7]:

Ontologies should be based upon a small number of primitive concepts.
These primitives should be given definite model theoretic semantics.
Axioms should only be given for the primitive concepts.

Categorical axiom sets should be sought.

The remaining vocabulary of the ontology (which may be very large), should
be introduced purely by means of definitions.

G o o~

In this paper, the first three principles are assumed. The fourth one will be
replaced by lattice categoricity. Categoricity is a strong requirement that can be
hard to achieve and to preserve. Even when it is achieved, the resultant the-
ory may be unmanageable (even undecidable) or unintuitive. This phenomenon
might suggest that we restrict the analysis of completeness to coherent parts of
the theory. However, it is not a local notion: since minor changes commit the
categoricity and it is expensive to repeat the logical analysis.

With respect to the last principle, starting with a basic theory, it seems
hard to define a new concept /relationship. It is better to consider it only as the
starting point to build an ontology, thinking thus that we are in early steps of
the process, where ontological insertions are necessary.

Finally (although it is not the topic of this paper), we would like to add
that an ontological insertion should be supported by a good theory about its
relationship with the original ontology. It should as well be supported by a nice
way of expanding a representative class of models of the source theory to the
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new one. This class of models must contain the intended models (those that the
ontology designer wants to represent). It can be required an interpretation of the
new elements which should be formalised, and an re-interpretation of the older
ones, which must be compatible with basic original principles.

3 Lattice categorical theories

In order to solve in practice the several logical problems ontological insertion
raises we will analyze the categoricity of the structure of the concepts of the
ontology. We are going to take into account compatibility which has been pre-
viously mentioned, and we are going to try to obtain definitions of the concepts
inserted in the new ontology. We will analyze categoricity of structure of the
concepts of ontology. For the sake of clarity, we suppose that the set of concepts
has a lattice structure. Actually, this is not a constraint: there are methods to
extract ontologies from data which produce such structure (such as the Formal
Concepts Analysis [13]) and, in general, the ontology is easy to be extended by
definition, verifying lattice structure. Although we think about Description Log-
ics [5] as ontological language (the logical basis for ontology languages as OWL,
see http://www.w3.org/TR/owl-features/), the definitions are useful for full
first order logic (FOL), so we give the definitions in FOL language.

On the one hand, a lattice categorical theory is the one that proves the lat-
tice structure of its basic relationships. This notion is weaker than categoricity or
completeness. On the other hand, lattice categoricity is a reasonable requirement:
the theory must certify the basic relationships among the primitive concepts. In
[8] we argued that completeness can be replaced by lattice categoricity to facil-
itate the design of feasible methods for extending ontologies. Let us summarize
these ideas.

Given a fixed FOL language, let C = {C4,...,Cy} be a (finite) set of concept
symbols, let T be a theory (in the general case, definable concepts in T can be
considered). Given M = T, we consider the structure L(M,C), in the language
Le ={T,L,<}+{c1,...,cn}, whose universe are the interpretations in M of
the concepts (interpreting ¢; as CM), T is M, 1 is §) and < is the subset relation.
Recall that L(M,C) is requested to have a lattice structure is a basic desiderata
that we assume from now on for every theory we consider. This requirement
simplifies the examples.

The relationship between L(M,C) and the model M itself is based in two
facts. The first one, the lattice L can be characterized by a finite set of equa-
tions Ep, plus a set of formulas @¢ categorizing the lattice under completion.
The second one, there exists a natural translation I7 of these L¢-equations into

formulas in the FOL language so that if E is a set of equations characterizing
L(M,C) (so L(M,C) E E), then M |= II(E).

Definition 1. Let E be a L¢-theory. We say that E is a lattice skeleton (I.s.)
for a theory T if E verifies that

— There is M =T such that L(M,C) |E E + O¢, and
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— E + O¢ has an unique model (modulo isomorphism,).

Every consistent theory has a lattice skeleton [8]. Roughly speaking, the existence
of essentially different lattice skeletons makes difficult to reason with the ontology
while the existence of only one would make it easy.

Definition 2. T is called o lattice categorical (l.c.) theory if whatever pair
of lattice skeletons for T are equivalent modulo Oc¢.

Note that if T is l.c. and E is a l.s. of T, then T' - II(E). Note also that every
consistent theory T' has an extension 7" which is lattice categorical: it suffices
to consider a model M = T, and then to find a set E of equations such that
Oc¢ + E has L(M,C) as only model. The theory T' + II(E) (and any consistent
extension of it) is l.c.

Finally, we can give a formalization of robust ontological extension, based in
the categorical extension of the ontology:

Definition 3. Given two pairs (T1, E1), (Ta, E2) we will say that (Ta, Es) is a
lattice categorical extension of (T, E1) with respect to the sets of concepts
C1 and Cy respectively, if C1 C Co and L(T»,Cs) is an Ei-conservative extension
Of L(Tl, Cl) .

For reasoning with the lattice of concepts it suffices to work with a lattice
skeleton, so, to simplify, we suppose throughout that T is the self L.s.

3.1 Cognitive support

Once formalized the notion of lattice categorical extension, we need to design
several functions to advise how to select the best 1.c. extension.

Assume that T is a theory, and L is the lattice defined by C in some M =T
From the point of view of ontology designer, such a model M is the intended
model that the ontology attempts to represent. Suppose that A = {hy,...h,}
is the set of facts on C, and the user wants to classify some elements that occur
in A by means of a new concept. We can suppose, to simplify the notation, that
every fact explicit in T belongs to A. Let U(A) be the universe determined by
A; that is, {a : exists C' € C [C(a) € Al}.

Given C € C in A, we consider

|C|4 :=|{a : C(a) € A}| and |C|2 :=|[{a € U(4) : TUA = C(a)}|.
Definition 4. The cognitive support of C' with respect to A, T and L, is

_ HaeU(4) : 3i[C; <E CATUA E Ci(a)l}]

This support estimates the number of facts on the concept C entailed by T,
normalized by the size of the universe U(A). Because of the computational com-
plexity of logical reasoning, it can be hard in general to compute it: we need
to seek, by logical entailment, the cone of concepts defined by C. However, this
computation is trivial for lattice categorical theories:
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Proposition 1. If T is lattice categorical, then sup%A(C) =

The proposition holds because if C; < C, then T = C; € C. Thus, if TU A =
Ci(a), then TU A = C(a).

From now on, we suppose that A is compounded by facts on atoms of the
lattice of concepts (that is, about the most specific concepts). Note, also, that if
T is l.c., then L is unique, and we will thus omit the superscript L in that case.

Corollary 1. If 7 = {C4,...,Cn} is a Jointly Exhaustive and Pairwise Dis-
joint (JEPD) set of concepts in L, then supr A(.) is a probability measure.

Proof. Tt is easily seen that Y., suph A(C) = 1.

The cognitive entropy of J is CH(J) = — Z supr, A(C) log supr, A (C).
CeJg

3.2 Entropy of ontological extensions

Suppose that the user decides that a set {a1,...,ar} C U(A) induces a new
concept D (provisionally, a notion). Such a notion might not be fully represented
by those elements. Also, it is possible that some of them do not belong to the new
concept, because of noise in the data. It might also be the case that the concept
is constrained by a set X of axioms introduced by the user. Furthermore it is also
possible that 7'+ X' is not 1. c., that is, this theory does not prove the intended
lattice induced by C U {D}. MACEA4 provides the collection {L1,..., Ly} of the
lattices induced by the models of T+ Y. Let T; be a lattice skeleton for L;
(i=1,...,m).

Now, we focus our attention on a concrete level of the Ontology, where we
intend to insert the new concept. The level will be a JEPD J = {C4,...,Cy} of
the lattice L verifying that if the new concept D contains some of them,

Jn={CieJ : C; <" D} #1

then J; = (J \ erb") U {D} is a JEPD in L;. Since T; is a l.c. extension of T,
the support of D is easy to achieve:

Theorem 1. In above conditions, supr, A(D) = Z sup%,A(Ci)
cedgs

To estimate the conditional entropy of the new extension, we consider a
natural definition of conditional support:
_HaeU(Q) : TUAEC(@)AT;UA | C'(a)}]
- CI2

supT;,T,A (C'|C) :
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This support allows to estimate the amount of new information produced by
the extension by standard methods; through the conditional entropy associated
to the two probability measures. The conditional cognitive entropy is :

CH(J|T:) =- Y supr,a(C'|C)logsupr, a(C'|C)
c'eJg
cCed:

This sum can be simplified (assuming 0log0 = 0): if C = C" or C,C" € J, then
supt, T,A(C'|C) log supr, T,.A(C'|C) =0

and the following property holds:

|2
|C

Proposition 2. In above conditions, supr, ,.A(C'|C) =

A
T;
This entropy is similar to Kullback-Leibler distance or relative entropy (see [15]),
but using the entailment to classify the elements. It is known that it is minor
than the initial entropy. In [12] similar entropies are used, but based on proba-
bilistic assignation. Finally, in order to estimate what is the best extension for
our purposes, it is necessary to compute the The Shannon’s diversity index

for each L;. This index normalizes the amount of information produced by the
extension, and is defined as

\_ CHWJ|I7)
THW) = g1

The interpretation of the index is as follows: if we select L; with minimum
IH(J;), the new information produced by the new concept is minor. This option
is the cautious one: the reparation of the source ontology is ligth and we do not
expect big changes in the representation of the intended model. If we select L;
with an upper IH(J), the change of the information is more relevant; we select
such an extension if we regard as robust the specification of the concept given
by X together with the facts. In general, we have to chose the l.c. extension with
minor index. Intuitively, in this way we do not change too much the information
of the initial ontology.

4 An example

We would like to show a short example in the field of Qualitative Spatial Reason-
ing (QSR). Region Connection Calculus (RCC) [11] is a well-known mereotopo-
logical approach to QSR, that we can consider to be a robust ontology. For
RCC, the spatial entities are non-empty regular sets. The primary relation be-
tween them is connection, C(z,y), with intended meaning: “the topological clo-
sures of x and y intersect”. The basic axioms of RCC are 4; := Vz[C(z, z)]
and A, := Vz,y[C(z,y) = C(y,z)] jointly with a set of definitions on the main
spatial relations (fig. 1), and other axioms not used here (see [11]).
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DC(z,y) ¢» ~C(z,y) (z is disconnected from y)

P(x,y) «» Vz[C(z,z) = C(z,9)] (z is part of y)
PP(z,y) <> P(z,y) A ~P(y, ) (z is proper part of y)
EQ(z,y) +> P(z,y) A P(y,x) (z is identical to y)
O(z,y) & 3z[P(z,2) A P(z,y)] (z overlaps y)
DR(z,y) <> =0(z,y) (z is discrete from y)
PO(z,y) < O(z,y) N —~P(z,y) N ~P(y,z) (z partially overlaps y)
EC(z,y) + C(z,y) A ~O(z,y) (z is externally connected to ¥)

TPP(z,y) <+ PP(z,y) A3z[EC(z,z) A EC(z,y)] (z is a tangential prop. part of y)
NTPP(z,y) <> PP(z,y) A ~3z[EC(z,z) A EC(z,y)] (z is a non-tang. prop. part of y)

Fig. 1. Axioms of RCC

We have proved (using MACE4 and OTTER) that the set of formulas E
given in the figure 2 categorises under completion the lattice of the RCC-spatial
relationships (given in fig. 3). The set of binary relations formed by the eight
(JEPD) relations given in figure 3 is denoted by RCC8. If this set is thought to
be a calculus, all possible unions of the basic relations are also used. Another
interesting calculus is RCC5, based on {DR, PO, PP, PPi, EQ}.

T=CuD POC-PN-PiNn-DR  DR=ECUDC
NTPPC -TPPMN~-PiN-DR C=0UEC TPPC -PiN-DR
O=POUPUP; EQ C -PPin-DR Pi=EQU PPi
TPPiC ~-NTPPiN-DR P=EQUPP NTPPi C -DR
PPi=TPPiNTPPi EC C -~DC PP =TPPUNTPP

Fig. 2. A skeleton for RCC

Suppose that if we insert a new spatial uncertain relation D expressing
“« and y have a tsometric overlapping relation”; that is, D covers partial over-
lapping PO and extentional equality EQ relationships. That is, proper part is
not possible between isometric objects. This is suggested by the study of spatial
relationships among identical objects (e.g. the 2-D spatial configuration of a set
of coins). Thus, we consider that the new relation D satisfies

RCC + {VaVy(PO(z,y) — D(z,y)), YaVy(EQ(z,y) — D(z,y))}
or, in terms of skeleton, E + {PO C D,EQ C D}. MACE4 produces seven l.c.
extensions (classified according to their lattices in fig. 4). All these extensions

can be mereotopologically interpreted [10]. Suppose that the set that motivates
the extension is:
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DC(a,b) EC(ab)  PO(ab) TPP(a,b)

TPPi(ab) NTPP(ab) NTPPi(ab)  EQ(ab)

Fig. 3. The lattice of spatial relations of RCC (left) and he relations of RCC8 (right)

PO(m1,m2) EQ(ma2,m3) EQ(m3z,ms) PO(mi,m3) DC(ma, me)
A= DC(m3,m5) PO(m5,m1) NTPP(cl,m3) EC(CQ,ml) TPP(CQ,C5)
DC(Cl,Cz) TPP’i(Cg,,Cg) NTPP(TYLQ,C4) DC(ml,Cg) TPP(Cl,Cg)

In this case, |U(A)| = 15, and the basic JEPD is the set J = {PO, PP, EQ, PPi,
EC,DC}%. In each L;, J; is a JEPD, so we can assign conditional entropy and
Shannon’s diversity index to each extension.Thus, T» = E +{D = POU EQ} is
the selected l.c. extension because it has the minimum Shannon’s index. On the
other hand, the user’s notion might be inconsistent. For instance, if the user’s
proposal for X' is {PO C D,EQ C D,P C D,D C O}, then there is not any
L.c. extension, a fact that we have certified using MACE4 and OTTER.

5 Closing Remarks

Although it is usual to study entropy for associating data to concepts in Ontology
Learning, it is not usual to consider the provability from ontology like a factor, as
we do. However, we think, that it will be a key issue in the SW. There are other
approaches, but they deal with probabilistic objects. J. Calmet and A. Daemi
also use entropy in order to revise or compare ontologies [9] [12]. This is based on
the self taxonomy defined by the concepts but provability from specification is
not regarded. Conditional entropy has already been considered in the similar task
of Abductive Reasoning for learning qualitative relationships/concepts (usually
in probabilistic terms, see e.g. [6]). The main difference between this approach
and ours is that we work with probability mass distribution of probable facts
from ontological specifications.

Finally, it should be noted that only some distributions of data will induce
the user to decide an ontological insertion. Therefore, although once the distri-
bution of data is determined, the method is fully formalized, the soundness of
the extensions still depends on human decisions.
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Abstract. In the Semantic Web information would be retrieved, pro-
cessed, combined, shared and reused in the maximum automatic way
possible. Obviously, such procedures involve a high degree of uncertainty
and imprecision. For example ontology alignment or information retrieval
are rarely true or false procedures but usually involve confidence degrees
or provide rankings. Furthermore, it is often the case that information
itself is imprecise and vague like the concept of a “tall” person, a “hot”
place and many more. In order to be able to represent and reason with
such type of information in the Semantic Web (SW), as well as, enhance
SW applications we present an extension of the Description Logic SHZN
with fuzzy set theory. We present the semantics as well as detailed rea-
soning algorithms for the extended language.

1 Introduction

Uncertainty, like imprecision and vagueness, is a factor that can cause the degra-
dation of the performance of a system. To this end, many applications and do-
mains have incorporated mathematical frameworks that deal with such type of
information, resulting in the improvement of their effectiveness. Applications like
robotics [1], computer vision [2] and many more have embraced frameworks like
fuzzy set theory [3] in order to improve their performance. On the other hand, in
the Semantic Web context, little work has been carried out towards this direc-
tion. Apart from the fact that uncertainty is many times a feature of information
itself, as for example the concepts of a “tall” man, a “fast” car, a “blue” sky
and many more, applications like information retrieval, automatic information
sharing and reuse are hardly true or false procedures but rather a matter of a
degree. The need for covering vagueness in the Semantic Web has been stressed
many times the past years [4-6]. It has been pointed out that dealing with such
information would improve many Semantic Web applications [7-9].

Knowledge in the SW is usually structured in the form of ontologies [10].
This has led to considerable efforts to develop a suitable ontology language,
culminating in the design of the OWL Web Ontology Language [11], which is now
a W3C recommendation. The OWL recommendation actually consists of three
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languages of increasing expressive power, namely OWL Lite, OWL DL and OWL
Full. OWL Lite and OWL DL are, basically very expressive description logics;
they are almost® equivalent to the SHZF (D) and SHOZN (D*) DLs. OWL
Full is clearly undecidable because it does not impose restrictions on the use
of transitive properties. Although the above DL languages are very expressive,
they feature expressive limitations regarding their ability to represent vague and
imprecise knowledge. As obvious, in order to make applications that use DLs
able to cope with vague and uncertain information we have to extend them with
a theory capable of representing this kind of information. One such important
theory is fuzzy set theory.

In the current paper we extend the results obtained in [9] for fuzzy ST (f-S7)
to the language SHZN, thus creating -SHIN. SHIN extends ST [12] with
number restrictions and role hierarchies [13]. Number restrictions give us the
ability to restrict the number of objects that a certain object is related to by a
specific relation. For example we can state that a car has exactly four wheels,
writing Car = Vehicle> 4hasWheel < 4hasWheel. But though this definition is
correct, it faces many limitations, for example, in the context of image processing
where several wheels of a car in an image might be hidden. Hence a detected
object can belong to a concept like, > 4hasWheel, only to a certain degree. On
the other hand role hierarchies allow us to state sub-role/super-role relations,
as for example the relation that holds between the hasChild and hasOffspring
roles. Regarding expressive power, SHZN is more expressive than OWL-Lite,
ignoring data-types. In the following we will introduce the syntax of -SHIN
and present a detailed procedure to reason with the extended language.

2 Syntax and Semantics of -SHIN

In this section we introduce the DL f-SHZN. As pointed out in the fuzzy DL
literature [9,14], fuzzy extensions of DLs involve only the assertion of individuals
to concepts and the semantics of the new language. Hence, as usual we have an
alphabet of distinct concept names (C), role names (R) and individual names
(I). £SHIN-roles and f-SHZN-concepts are defined as follows:

Definition 1. Let RN € R be a role name, R an f-SHIN -role, C,D f-SHIN -
concepts. Valid f-SHIN -roles are defined by the abstract syntax: R := RN | R™.
The inverse relation of roles is symmetric, and to avoid considering roles such as
R~ , we define a function Inv, which returns the inverse of a role, more precisely
Inv(R) := RN~ if R= RN and Inv(R) := RN if R=RN".

The set of -SHIN concepts is the smallest set such that:

1. every concept name C € CN is an f-SHIN -concept,

2. if C and D are [~SHIN -concepts, R is an [~SHIN -role, S a simple f-
SHIN -role [15] and p € N, then (CU D), (CN D), (-C), (VR.C), (3R.C),
(> pS) and (< pS) are also [-~SHIN concepts.

3 They also provide annotation properties, which Description Logics don’t.
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Table 1. Semantics of -~SHZN -concepts

T (a) 1
1T@) = 0
(—=C)%(a) = 1-C%(a)
(Cu D)I(a) = mam(C’I(a), DI(a))
(cn D)I(a) = min(Cz(a), Dz(a))
(VR.C) (a) = infyeaz{maz(1 — R*(a,b),C% (b))}
(3R.C)* (a) = SUDpec AT {min(R*(a,b),CT (b))}
(> pR)I(a) = SUDp,..bpeal min?:l Rz(av bi)
(PR (a) = infy . eaz max?T {1 — R%(a,bi)}
(R7)* (b, a) R*(a,b)

A fuzzy TBozx is a finite set of fuzzy concept axioms. Let A be a concept
name, C' a f-SHZN -concept. Fuzzy concept axioms of the foorm A C C are
called fuzzy inclusion introductions; fuzzy concept axioms of the form A = C
are called fuzzy equivalence introductions. Note that how to deal with general
fuzzy concept inclusions [12] still remains an open problem in fuzzy concept
languages. A fuzzy RBoz is a finite set of fuzzy role axioms. Fuzzy role axioms
of the form Trans(RN), where RN is a role name, are called fuzzy transitive
role azioms; fuzzy role axioms of the form R C S are called fuzzy role inclusion
axioms. We use the notation E to denote the transitive-reflexive closure of C.
A role R is called sub-role (super-role) of a role S if RES (S ER). A fuzzy
ABoz is a finite set of fuzzy assertions. A fuzzy assertion [14] is of the form
(a : Cxny, ((a,b) : Rxin), where  stands for >, >, < or < or a # b, for a,b € I.
Intuitively, a fuzzy assertion of the form (a : C' > n) means that the membership
degree of a to the concept C is at least equal to n. We call assertions defined
by >,> positive assertions, while those defined by <, < negative assertions [9)].
A fuzzy knowledge base X' is a triple (7, R,.A), where T is a fuzzy T Boz,
R is a fuzzy RBox and A is a fuzzy ABox. A pair of assertions are called
conjugated if they impose contradicting restrictions. For example, the pair of
assertions (¢ > n) and (¢ < m), with n > m contradict to each other. In the
presence of role hierarchies one should also take into consideration possible sub-
or super-roles when checking for such contradictions. For example the assertions
((a,b) : R >0.7) and ((a,b) : P < 0.4), with P & R are conjugated. For a detailed
description of the possible conjugated pairs the reader is referred to [14].

The semantics of fuzzy DLs are provided by a fuzzy interpretation [9,14]. A
fuzzy interpretation is a pair Z = (AZ,-T) where the domain A7 is a non-empty
set of objects and -7 is a fuzzy interpretation function, which maps an individ-
ual name a to elements of aZ € A% and a concept name A (role name R) to
a membership function AT : AT — [0,1] (R : AT x AT — [0,1]). Moreover,
fuzzy interpretations are extended to interpret arbitrary f-SHZN -concepts and
roles. The complete set of semantics is depicted in Table 1, where inf stands
for the infimum and sup for the supremum of a set. Note that apart from the
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fuzzy number restrictions, the interpretation of fuzzy concepts and concept con-
structors is the usual one found in the DL literature [9,14,16], where the Godel
conjunction (t(a,b)=min(a,b)), the Godel disjunction (u(a,b)=max(a,b)) and
the Kleen-Dienes fuzzy implication (J (a,b)=max(1-a,b)) are used for perform-
ing the fuzzy set theoretic operations. The semantics of fuzzy number restric-
tions were first presented in [17]. We chose to follow these semantics because,
as pointed out in [17], they are derived by the First-Order formulae of classical
number restrictions [17]. In [9] the naming fx p-SZ was used due to the usage
of the Kleen-Dienes fuzzy implication. Since we also use the same implication
here, from now on, we will refer to the extended language as fxp-SHIN.

An fxp-SHIN-concept C' is satisfiable iff there exists some fuzzy interpre-
tation Z for which there is some a € AZ such that C%(a) = n, and n € (0,1].
A fuzzy interpretation 7 satisfies a fuzzy TBoz T iff Va € AT, A%(a) < C%(a)
for each A C C in 7 and AZ(a) = C%(a) for each A = C in 7. The seman-
tics of fuzzy inclusion axioms is the usual one found in fuzzy set theory [3].
A fuzzy interpretation Z satisfies a fuzzy RBox R iff Va,b,c € AT, R*(a,c) >
suppe Az {min(RZ(a,b), RZ(b,c))} for each Trans (R) in R, and V{a, b) € AT x AT,
R%(a,b) < S%(a,b) for each R C S. Note that the semantics of role inclusion ax-
ioms R C S imply Inv(R) C Inv(S). A fuzzy relation R, defined over the domain
X x X, is called sup-min transitive iff R(x,z) > sup,cx min(R(z,y), R(y, 2))-
Given a fuzzy interpretation Z, 7 satisfies (a : C > n) if C%(a?) > n, T satis-
fies {(a,b) : R > n) if RZ(a%,b?) > n, while T satisfies a # b if aZ # b7. The
satisfiability of fuzzy assertions with <, > and < is defined analogously. A fuzzy
interpretation satisfies a fuzzy ABox A if it satisfies all fuzzy assertions in A.
In this case, we say Z is a model of A. If A has a model then we say that it
is consistent. Finally, a fuzzy knowledge base X is satisfiable iff there exists a
fuzzy interpretation Z which satisfies all axioms in Y. Moreover, X' entails an
assertion (¢x<n) or a fuzzy concept inclusion axiom C' T D, written X' = (¢r<an)
or ¥ = C C D, iff any model of X' also satisfies the fuzzy assertion or fuzzy con-
cept inclusion axiom, respectively. The problems of entailment and subsumption
can be reduced to fuzzy knowledge base satisfiability as is shown in [14].

Since a fuzzy ABox A might contain many positive assertions for the same
individual (pair of individuals), without forming a contradiction, it is in our
interest to compute what is the best lower and upper truth-value bounds of a
fuzzy assertion. In [14] the concept of greatest lower bound of a fuzzy assertion
w.r.t. X was defined as glb(X, ¢) = sup{n : X' |= (¢ > n)}, and that of a least
upper bound as, lub(X, ¢) = inf{n : X | (¢ < n)}, where ¢ represents a crisp
assertion of the form a : C or (a,b) : R. Observe that sup@) = 0 and inf ) = 1.
A procedure to solve the best truth-value bound was provided in [14]. Such a
procedure can also be used in our framework.

3 A fuzzy tableau for fxp-SHIN ABoxes

Most of the inference services of fuzzy DLs, can be reduced to the problem of con-
sistency checking for ABozxes [14]. Consistency is usually checked with tableaux
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algorithms that try to construct a fuzzy tableau for a fuzzy ABox A [9], which is
an abstraction of a model of A [13]. The tableau has a forest-like structure with
nodes representing the individuals that appear in A, and edges between nodes,
which represent the relations that hold between two individuals. Each node is
labelled with a set of triples of the form (D, n), which denote the concept,
the type of inequality and the membership degree that the individual of the
node has been asserted to belong to D. We call such triples membership triples.
For triples of a single node, the concepts of conjugated, positive and negative
triples can be defined in the obvious way. Since the expansion rules decompose
the initial concept, the concepts that appear in triples are sub-concepts of the
initial concept. Sub-concepts of a concept D are denoted by sub(D). The set of
all sub-concepts that appear within an ABox is denoted by sub(.A).

Since the De’Morgan laws are satisfied by the operations we use in the current
paper [3] all concepts are assumed to be in their negation normal form (NNF)
[18]. In the following we use the symbols > and < as a placeholder for the
inequalities >, > and <, < and the symbol 1 as a placeholder for all types of
inequations. Furthermore we use the symbols txx—, >~ and <1~ to denote their
reflections. For example the reflection of < is > and that of > is <.

Definition 2. Let A be an fxp-SHIN ABox, R4 the set of roles occurring in
A together with their inverses, 14 the set of individuals in A, X the set {>,>
, <, <} and R a fuzzy RBox. A fuzzy tableau T for A w.r.t. R is a quadruple
(S, L, €, V) such that:

— S is a non-empty set of individuals (nodes),

— L:8— 25w x X x [0,1] maps each element of S to membership triples,
— E: Rp — 2575 x X x [0,1] maps each role to membership triples,

— V:14 — S maps individuals occurring in A to elements in S.

For all s,t € S, C,FE € sub(A), and R € Ry, T salisfies:

1. If (-C,>,n) € L(s), then (C,><x7,1 —n) € L(s),

2. If (CNE,>,n) € L(s), then (C,>,n) € L(s) and (E,>,n) € L(s),

3. If (CUE,<,n) € L(s), then (C,<,n) € L(s) and (E,<,n) € L(s),

4. If (CUE,>,n) € L(s), then (C,>,n) € L(s) or (E,>,n) € L(s),

5 If (CNE,<,n) € L(s), then (C,<q,n) € L(s) or (E,<,n) € L(s),

6. If (VR.C,1>,n) € L(s) and {(s,t),>',n1) € E(R) is conjugated with {{s,t),>",1—
ny, then (C,>,n) € L(t),

7. If (AR.C,<,n) € L(s) and {(s,t),I>,n1) € E(R) is conjugated with {(s,t), <, n),
then (C,<1,n) € L(t),

8. If (AR.C,>,n) € L(s), then there exists t € S such that {(s,t),>,n) € E(R) and
(C,>,n) € L(1),

9. If (YR.C,<,n) € L(s), then there exists t € S such that ((s,t),<™,1 —n) € E(R)
and (C, <,n) € L(t),

10. If (35.C,<q,n) € L(s), and {{s,t),>,n1) € E(R) is conjugated with ((s,t), <1, n),
for some R Z S with Trans(R), then (AR.C, <, n) € L(1),
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11. If (VS.C,1>,n) € L(s) and ({s,t),>',n1) € E(R) is conjugated with ((s,t),>",1 —
ny, for some R S with Trans(R), then (VR.C,>,n) € L(t),

12. ({s,t),>q,n) € E(R) iff ((t,s),>,n) € E(Inv(R)),

13. If ((s,t),>,n) € E(R) and R E S then, ({(s,t),>,n) € £(5),

14. If (> pR,>,n) € L(x), then |[{t € S| {(s,t),>>,n) € E(R)}| > p,

15. If (< pR,<,n) € L(z), then |{t € 8| ({s,t),<a7,1—n) € E(R)} >p+1,

16. If (> pR,<,n) € L(x), then |{t € S| ((s,t),>,ns) € E(R)} < p— 1, conjugated
with ((s,t), <, n),

17. If (< pR,1>,n) € L(x), then [{t € S| ({s,t),>",n;) € E(R)}| < p conjugated with
{s,t),>7,1 —n),

18. There do not exist two conjugated triples in any label of any individual x € S,

19. If (a: Cran) € A, then (C,>q,n) € L(V(a)),

20. If {(a,b) : Rxan) € A, then ((V(a),V(b)),>,n) € E(R),

21. Ifa#be A, then V(a) # V(b)

Properties 10 and 11 are a consequence of the fact that the supremum and
infimum restrictions have to be preserved, when relations that have transitive
sub-roles participate in negative existential and positive value restrictions. The
membership degrees that the concepts are being propagated, in Properties 10 and
11, is the same as in the nodes that cause propagation. The proof of this property
is quite technical and omitted here. Properties 14-17 are a direct consequence of
the semantics of fuzzy number restrictions and the fact that from the De’ Morgan
laws we can establish equivalences between negative and positive triples.

Lemma 1. An fxp-SHIN-ABox A is consistent w.r.t. R iff there exists a
fuzzy tableau for A w.r.t. R.

3.1 The Tableaux Algorithm

In order to decide ABox consistency a procedure that constructs a fuzzy tableau
for an fxp-SHZIN ABox has to be determined. In the current section we will
provide the technical details for constructing a correct tableaux algorithm. As
pointed out in [13] algorithms that decide consistency of an ABox work on
completion-forests rather than on completion-trees. This is because an ABox
might contain several individuals with arbitrary roles connecting them. Such a
forest is a collection of trees that correspond to the individuals in the ABozx.

Nodes in the completion-forest are labelled with a set of triples £(x) (node
triples), which contain membership triples. More precisely we define £(z){(C,>,n)},
where C € sub(A) and n € [0, 1]. Furthermore, edges (x,y) are labelled with a
set L({z,y)) (edge triples) defined as, L((x,y)) = {(R,>,n)}, where R € Ry4.
The algorithm expands the tree either by expanding the set £(z), of a node x
with new triples, or by adding new leaf nodes.

If nodes z and y are connected by an edge (z,y), then y is called a successor
of x and x is called a predecessor of y, ancestor is the transitive closure of
predecessor. A node z is called an S — neighbour of a node x if for some R with
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Table 2. Tableaux expansion rules

Rule

Description

(M)

(Ua)

(Us)

(M«)

(@)

(Va)

(3<)

(V4)

()

(=)

(£4)

(<)

(=<)

($rp)

(Zrg)

if 1.
2
then
if 1.
2.
then
if 1.
2
then
if 1.
2.
then
if 1.
2
then
if 1.
2.
then
if 1.
2
then
if 1.
2.
3
then
if 1.
2.
3
then
if 1.
2
3.
then

if 1.

then
if 1.

then
if 1.
then
if 1.

then

if 1.
then
if 1.

then

if 1.
then

(=C,x,n) € L(x)

.and (C,x7,1 —n) € L(z)

L(z) — L(z) U{{C,<x7, 1 —=n)}

(C1 N Cs,>,n) € L(x), = is not indirectly blocked, and
{{C1,>,n),(C2,>,n)} Z L(z)

L(z) — L(z) U{(C1,>,n),(C2,>,n)}

(C1 UCa,<,n) € L(z), = is not indirectly blocked, and
{{C1,<,n),(C2, <4, n)} Z L(x)

L(z) — L(z) U{(C1,<,n), (Ca,<,n)}

(C1 UCs,>,n) € L(x), = is not indirectly blocked, and

{(C1,>,n), (Co, >, M)} N L(2) =0

L(z) — L(z) U{C} for some C € {(C1,>,n),(Ca,>,n)}

(C1 M Ca, <, n)L(x), x is not indirectly blocked, and

{{C1,<,n),(C2, <, n)} N L(z) =0

L(z) — L(z) U{C} for some C € {(C1,<,n),(C2,<,n)}

(3R.C, >, n) € L(x), x is not blocked,

z has no R-neighbour y connected with a triple (P*,>,n), P & R and (C,>,n) € L(y)
create a new node y with £L({z,y)) = {(R,>,n)}, L(y) = {(C,>,n)},

(VR.C, <, n) € L(z), x is not blocked,

.  has no R-neighbour y connected with a triple (P*, <7 ,1 —n), P& R and (C, <, n) € L(y)

create a new node y with £L({z,y)) = {(R,<7,1—n)}, L(y) = {(C, <4, n)},
(VR.C,>,n) € L(z),  is not indirectly blocked, and

z has an R-neighbour y with (C,>,n) € L(y) and

(*,>7,1 —n) is conjugated with the positive triple that connects = and y
L(y) = Ly U{{C,>,n)},

(3R.C, <, n) € L(x), x is not indirectly blocked and

z has an R-neighbour y with (C, <, n) € L(y) and

(%, <1, n) is conjugated with the positive triple that connects x and y

L(y) = L(y) U{{C,<q,n)},

(VR.C,1>,n) € L(z), x is not indirectly blocked, and

there is some P, with Trans(P), and P & R, x has a P-neighbour y with, (VP.C,>,n) € L(y), and
(%,>7,1 — n) is conjugated with the positive triple that connects z and y
L(y) = L(y) U{(VP.C, >, n)},

(3R.C, <, n) € L(x), x is not indirectly blocked and

. there is some P, with Trans(P), and P & R, = has a P-neighbour y with, (3P.C,<,n) € L(y), and
. (%, <, n) is conjugated with the positive triple that connects x and y

L(y) = L(y) V{(3P.C,q,n)},
(> pR,>,n) € L(z), = is not blocked,

. there are no p R-neighbours y1, ..., yp connected to = with a triple (P*,>,n), P & R,
cand y; #yj for 1 <i<j<p

create p new nodes y1,...,yp, with L({(z,y;)) = {(R,>,n)} and y; #y; for 1 <i<j<p
(< pR,<,n) € L(z), x is not blocked,

apply (> )-rule for the triple (> (p+1)R, <" ,1 —n)

(< pR,>,n) € L(z), = is not indirectly blocked,

. there are p + 1 R-neighbours y1, ..., yp4+1 connected to & with a triple (P™, >',n;), PER,
. which is conjugated with (P*,>7,1 — n), and there are two of them y, 2z, with no y # z and
. y is neither a root node nor an ancestor of z

1. £(z) — L(2) U L(y) and

2. if z is an ancestor of z

then L({(z,z)) — L((z,2)) Ulnv(L({z,y)))

else L((z, z)) — L((z,2)) U L((z,y))

3. L({z,y)) — 0

4. Set u # z for all u with u # y

(> pR,<,n) € L(z), = is not indirectly blocked,
apply (< )-rule for the triple (< (p — 1)R, <7 ,1 —n)

(< pR,1>,n) € L(z),

. there are p + 1 R-neighbours yi, ..., yp4+1 connected to = with a triple (P*,>", n;), P X R,
. conjugated with (P*,>7,1 — n), and there are two of them y, 2z, both root nodes, with no y # z

1. L(z) — L(2) U L(y) and

2. For all edges (y, w):

i. if the edge (z,w) does not exist, create it with £((z,w)) =0
i, £((z, ) —— L((z,w)) U L({y, )

3. For all edges (w, y):

i. if the edge (w, z) does not exist, create it with L({(w, z)) =0
i, L((w, 2)) — L((w, 2)) U L({w, )

4. Set L(y) = 0 and remove all edges to/from y

5. Set u # z for all uw with u # y and set y = 2

(= pR,<,n) € L(x),
apply (<ry )-rule for the triple (< (p — DR, <", 1 —n)
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R E S either y is a successor of x and L({z,y)) = (R,<,n) or y is a predecessor
of x and L({y,z)) = (Inv(R),><, n). We then say that the edge triple connects x
and y to a degree of n.

A node x is blocked iff it is not a root node and it is either directly or indirectly
blocked. A node z is directly blocked iff none of its ancestors is blocked, and it
has ancestors 2/, y and y’ such that: (i) y is not a root node, (ii) « is a successor
of ' and y a successor of ¢y, (iii) L(z) = L(y) and L(z') = L(y) and, (iv)
L({z',z)) = Ly, y)). In this case we say that y blocks z. A node y is indirectly
blocked iff none of its ancestors is blocked, or it is a successor of a node x and
£((w.y) = 0. |

The algorithm initializes a forest F4 to contain a root node zj, for each
individual a; € I4 occurring in the ABox A and additionally {(C;, >, n) JUL(z}),
for each assertion of the form (a; : C;xn) in A, and an edge (z{, ) if A contains
an assertion ((a;, a;) : Riban), with {(R;,5<, n) }UL((x), z})) for each assertion of
the form ((a;,a;) : Ri>an) in A. At last we initialize the relation # as &) # @ if
a; # aj € A and the relation = to be empty. F 4 is then expanded by repeatedly
applying the rules from Table 2. We use the notation R* to denote either the
role R or the role returned by Inv(R), and the notation (x,,n), to denote any
role that participates in such a triple.

For a node x, L£(x) is said to contain a clash if it contains one of the following:
(a) two conjugated pairs of triples, (b) one of the triples (L,> n), (T,<,n),
with n > 0, n < 1, (L,>n), (T,<,n) (C,<,0) or (C,>,1), (c) some triple
(< pR,>>,n) € L(x) and x has p + 1 R-neighbours yo, ..., yp, connected to x
with a triple (P*, >, n;), P E R, which is conjugated with (P*,>>~,1 —n), and
y; # yj, forall 0 < i < j < p, or (d) some triple (> pR, <, n) € L(z) and = has p
R-neighbours vyo, ..., Yp—1, connected to z with a triple (P*, >, n;), P & R, which
is conjugated with (P*, <1, n), and y; # y;, for all 0 <7 < j < p. A completion-
forest is clash-free if none of its nodes contains a clash, and it is complete if none
of the expansion rules is applicable.

Lemma 2. Let A be an fxp-SHIN ABox and R a fuzzy RBox. Then

1. when started for A and R the tableauz algorithm terminates
2. A has a fuzzy tableau w.r.t. R if and only if the expansion rules can be applied
to A and R such that they yield a complete and clash-free completion forest.

4 Related Work

Much work has been carried out towards combining fuzzy logic and description
logics during the last decade. The initial idea was presented by Yen in [19], where
a structural subsumption algorithm was provided in order to perform reasoning.
The DL language used was a sub-language of the basic DL ALC. Reasoning in
fuzzy ALC was latter presented in [14], as well as in other approaches [20, 21],
where an additional concept constructor, called membership manipulator was
included in the extended language. In all these approaches tableaux decision
procedures were presented for performing reasoning services. The operations
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used to interpret the concept constructors in all these approaches were the same
ones as in our context. Approaches towards more expressive DLs, are presented
in [16], where the DL is ALCQ, and in [17], where the language is SHOZN (D).
The former one also included fuzzy quantifiers, which is a new novel idea for fuzzy
DLs. Unfortunately, in both these approaches only the semantics of the extended
languages were provided and no reasoning algorithms. As far as we know the
most expressive fuzzy DL presented till now, which also covers reasoning, is
fxp-SZ, appeared in [9]. The present work provides an extension of the latter
one to an even more expressive DL, namely SHZN. .

5 Conclusions

The importance and role that uncertainty, like vagueness (fuzziness) and im-
precision, plays in the Semantic web context, as well as to many applications
that use DLs to capture, represent and perform reasoning with domain knowl-
edge has been stressed many times in the literature [4-8]. To this extent we
have presented an extension of the very expressive description logic SHZN with
fuzzy set theory. Description logics are very powerful and expressive logical for-
malisms, which are used by ontology creation languages in the Semantic Web
context. Moreover, fuzzy set theory is one very important theory for capturing
and dealing with vagueness. Additionally, we have presented a detailed reasoning
algorithm for deciding fuzzy ABox consistency. In order to achieve this goal we
have provided an investigation of the properties of fuzzy cardinalities, in order
to provide sound rules for such types of concept constructors. As far as future
directions are concerned, these will include the extension of the SHOZN(G) de-
scription with fuzzy set theory. SHOZN(G) extends SHZN with nominals [22]
and datatype groups [23].
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Abstract. We propose an extension to Description Logics (DLs) with
uncertainty which unifies and/or generalizes a number of existing frame-
works for DLs with uncertainty. To this end, we first give a classification
of these frameworks and identify the essential features as well as proper-
ties of the various combination functions allowed in the underlying uncer-
tainty formalisms they model. This also allows us express the semantics
of the DL elements in a flexible manner. We illustrate how various DLs
with uncertainty can be expressed in our generic framework.

1 Introduction

Ever since Tim Berners-Lee introduced the vision of the Semantic Web [2], at-
tempts have been made on making Web resources more machine-interpretable
by giving Web resources a well-defined meaning through semantic markups. One
way to encode such semantic markups is using ontologies. Over the last few years,
a number of ontology languages have been developed, most of which have a foun-
dation based on Description Logics (DLs) [1]. The family of DLs is a subset of
first-order logic (FOL) that is considered to be attractive as it keeps a good
compromise between expressive power and computational tractability.

Uncertainty management has been a challenge for over two decades in database
(DB) and artificial intelligence (AI) research (see [10,12]), and has recently at-
tracted the attention of the DL community. Uncertainty is a form of deficiency
or imperfection commonly found in the real-world information/data. A piece of
information is uncertain if its truth is not established definitely.

Despite of the popularity of DLs, it has been realized that the standard
DL framework is inadequate to model uncertainty. For example, in the medical
domain, one might want to express that: “It is very likely that an obese person
would have heart disease”, where “obese” is a vague concept that may vary across
regions or countries, and “likely” shows the uncertain nature of the knowledge.
Such knowledge cannot be expressed within the current scope of DL.

Recently, a number of proposals have been put forward which extend DLs
with uncertainty. Some of them deal with the vagueness aspect while others
deal with the uncertainty aspect. We do not intend to compare which extension
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is better. In fact, different applications may require using different aspects. It
may even be desired in some cases to model different aspects within the same
application.

Following the parametric approach proposed in [11], we propose a generic
DL framework with uncertainty in this paper as a unifying umbrella for several
existing frameworks for DLs with uncertainty. This not only provides a uniform
access over knowledge that has been encoded using DL with various kinds of
uncertainty, but also allows one to study various problems, including semantics,
query processing and optimization, design, and implementation of such frame-
works in a framework-independent manner.

The rest of this paper is organized as follows. Section 2 presents a classifica-
tion of existing frameworks of uncertainty in DL. In section 3, we present our
generic framework for DL with uncertainty in detail, along with examples illus-
trating how it can represent uncertainty modeled in the frameworks considered.
Concluding remarks and some future directions are presented in section 4.

2 Approaches to DL with Uncertainty

On the basis of their mathematical foundation and the type of uncertainty mod-
eled, we can classify existing proposals of DLs with uncertainty into three ap-
proaches: fuzzy, probabilistic, and possibilistic approach.

The fuzzy approach, based on fuzzy set theory [19], deals with the vagueness
in the knowledge, where a proposition is true to only some degree. For example,
the statement “Jason is obese with degree 0.4” indicates Jason is slightly obese.
Here, the value 0.4 is the degree of membership that Jason is in concept obese.

The probabilistic approach, based on the classical probability theory, deals
with the uncertainty due to lack of knowledge, where a proposition is either
true or false, but one does not know for sure which one is the case. Hence, the
certainty value refers to the probability that the proposition is true. For example,
one could state that: “The probability that Jason would have heart disease given
that he is obese lies in the range [0.8,1].”

Finally, the possibilistic approach, based on possibility theory [20], allows
both certainty (necessity measure) and possibility (possibility measure) be han-
dled in the same formalism. For example, by knowing that “Jason’s weight is
above 80 Kg”, the proposition “Jason’s weight is 80 Kg” is necessarily true with
certainty 1, while “Jason’s weight is 90 Kg” is possibly true with certainty 0.5.

3 A Generic Framework for DL with Uncertainty

To incorporate uncertainty into DL, each component of the classical DL frame-
work needs to be extended, as shown in Fig. 1. To be more specific, any frame-
work for DL with uncertainty consists of the following three components.

1. Description Language with Uncertainty: The syntax and semantics of the
description language are extended to enable expression of uncertainty.

78



2. Knowledge Bases with Uncertainty: A knowledge base is composed of the
intensional knowledge, i.e., TBox (for terminological axioms) and RBox (for
role axioms), both extended with uncertainty, and extensional knowledge,
i.e., ABox (for assertions), with uncertainty.

3. Reasoning with Uncertainty: The DL framework is equipped with reasoning
services that take into account the presence of uncertainties in DL theories
during the reasoning process.

Intensional Knowledge
[ TBox with Uncertainty |

/I RBox with Uncertainty |

Description
Language
with Uncertainty

W Extensional Knowledge
| ABox with Uncertainty |

Knowledoe Base with Uncertainty

Fig. 1. DL Framework with Uncertainty

In what follows, we focus more on the first two components and discuss them in
detail. The third component, the reasoning aspect, is under investigation. This
section ends with some examples illustrating how different notions of uncertainty
could be represented using our generic framework.

3.1 Description Language with Uncertainty

To provide a generic extension to a description language, one needs to develop
a way to represent certainty values, and assign semantics to each element in the
description language.

Representation of Certainty Values. To represent the certainty values, we
take a lattice-based approach followed in the parametric framework [11]. That is,
we assume that certainty values form a complete lattice shown as £ = (V, <),
where V is the certainty domain, and < is the partial order defined on V. We
also use b to denote the bottom or least element in V, and use ¢t to denote the
top or greatest value in V. The least upper bound operator (the join operator)
in £ is denoted by @, its greatest lower bound (the meet operator) is denoted
by ®, and its negation operator is denoted by ~.

The certainty lattice can be used to model both qualitative and quantitative
certainty values. An example for the former is classical logic which uses the
binary values {0,1}. For the latter, an example would be a family of multi-
valued logics such as fuzzy logic which uses [0, 1] as the certainty domain.
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Assignment of Semantics to Description Language. The generic frame-
work treats each type of uncertainty formalism as a special case. Hence, it would
be restrictive to consider any specific function to describe the semantics of the
description language constructors (e.g., fixing min as the function to determine
the certainty of concept conjunction). An alternative is proposed in our generic
framework to allow a user to specify the functions that are appropriate to define
the semantics of the description language element at axiom or assertion level.
We elaborate more on this in section 3.2.

To make sure that the combination functions specified by a user make sense,
we assume the following properties for various certainty functions to be reason-
able. Most of these properties were recalled from [11], and are reasonable and
justified when we verify them against existing extensions of DL with uncertainty.
To present these properties, we consider the description language constructors
in ALC [1]. We assume that the reader has the basic knowledge about ALC.

Let Z = (AZ, -I) be an interpretation, where AZ is the domain and -Z is
an interpretation function that maps description language elements to some
certainty value in V.

Atomic Concept. The interpretation of an atomic concept A is a certainty value
in the certainty domain, i.e., AZ(a) € V, for all individuals a € AZ. For example,
in the fuzzy approach, the interpretation of an atomic concept A is defined as
AZ(a) € [0,1], that is, the interpretation function assigns to every individual a
in the domain, a value in the unit interval that indicates its membership to A.

Atomic Role. Similar to atomic concepts, the interpretation of an atomic role R
is a certainty value in the certainty domain, i.e., RZ(a,b) € V, for all individuals
a,be AL

Top/Universal Concept. The interpretation of the top or universal concept T is
the greatest value in V, that is, TZ = ¢. For instance, in fuzzy, probabilistic, and
possibilistic approaches, the interpretation of T is 1, or true in standard logic.

Bottom Concept. The interpretation of the bottom concept L is the least value
in V, that is, L7 = b. For example, in fuzzy, probabilistic, and possibilistic ap-
proaches, the interpretation of L is 0, or false in standard logic.

Concept Negation. Given a concept C, the interpretation of concept negation
—(C is defined by the negation function ~, which is a mapping from V to V, and
should satisfy the following properties:

— Boundary Conditions: ~b =% and ~t = b.
— Double Negation: For each certainty value o € V, we have that ~ (~a) = a.

In our presentation here, we consider the negation operator ~ in the certainty
lattice as the default negation function. Other properties of the negation func-
tion, such as monotonicity (i.e., Vo, 8 € V, if @ < f, then ~a =~ ), may be
imposed if necessary. The most common interpretation of —C' is (1 — certainty
of C), where V = [0,1].

80



Before we present the properties of functions that are appropriate to describe
the semantics of concept conjunction and disjunction, we first identify a set of
desired properties which combination function f should satisfy. These functions
are used to combine a collection of certainty values into one value. We then
identify a subset of these properties suitable for describing the semantics of
logical formulas on the basis of concept conjunction and disjunction. Note that,
since f is used to combine a collection of certainty values into one, we describe
f as a binary function from V xV to V. This view is clearly without loss of
generality and, at the same time, useful for implementing functions.

Monotonicity: f(ai,a2) X f(B1,82), whenever a; < 3;, for i =1,2.
Bounded Value (Above): f(ai,as) < a4, for i =1,2.

Bounded Value (Below): f(a1,as2) = ay, fori =1,2.

Boundary Condition (Above): Ya € V, f(a,b) = a and f(a,t) =t.
Boundary Condition (Below): Va € V, f(a,t) = a and f(«a,b) = b.
Commutativity: Vo, 8 € V, f(a, 8) = (8, a).

Associativity: Vo, 8,6 € V, f(a, £(8,6)) = f(f(a, 8),0).

N ok L=

Concept Conjunction. Given concepts C' and D, the interpretation of concept
conjunction C'M D is defined by the conjunction function f. that should sat-
isfy properties 1, 2, 5, 6, and 7. The monotonicity property is required so that
the reasoning is monotone, i.e., whatever that has been proven so far will re-
main true for the rest of the reasoning process. The bounded value property
is included so that the interpretation of the certainty values makes sense. Note
that this property also implies the boundary condition (property 5). The com-
mutativity property supports reordering of the arguments of the conjunction
operator, and associativity ensures that different evaluation order of a conjunc-
tion of concepts does not change the result. These properties are useful during
the runtime evaluation used by the reasoning procedure. Examples of conjunc-
tions include the usual product x and min functions, and bounded difference
defined as bDif f(a, 3) = maz(0,a +5 —1).

Concept Disjunction. Given concepts C and D, the interpretation of concept
disjunction C'U D is defined by the disjunction function f; that should satisfy
properties 1, 3, 4, 6, and 7. The monotonicity, bounded value, boundary con-
dition, commutativity, and associativity properties are required for similar rea-
sons as the conjunction case. Some common disjunction functions are: the stan-
dard maz function, the probability independent function defined as ind(a, 3)
= a+ 8 — af, and the bounded sum function defined as bSum(a, 8) = min(1,
a+f).

Role Value Restriction. Given a role R and a role filler C', the interpretation of
role value restriction VR.C' is defined as follows:

Va € A%, (YR.C)%(a) = ®yez{ fal~ R (a,0),C7(b))}
The intuition behind this definition is to view VR.C' as the open first order for-
mula Vb. R(a,b) — C(b), where R(a,b) — C(b) is equivalent to —R(a,b) vV C(b),
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and V is viewed as a conjunction over the elements of the domain. To be more
specific, the semantics of —R(a, b) is captured using the negation function ~ as
~R%(a,b), the semantics of =R(a,b) vV C(b) is captured using the disjunction
function as fq(~ R%(a,b),C? (b)), and Vb is captured using the meet operator in
the lattice ®pcaz-

Role Exists Restriction. Given a role R and a role filler C, the interpretation of
role exists restriction IR.C is defined as follows:
Va € A*, (3R.C)*(a) = @pcaz{fec(R* (a,b),C* (b))}

The intuition for this property is that we view IR.C as the open first order
formula 3b. R(a,b) A C(b), where 3 is viewed as a disjunction over the elements
of the domain. To be more specific, the semantics of R(a,b) A C(b) is captured
using the conjunction function as f.(R%(a,b),C% (b)), and 3b is captured using
the join operator in the lattice @y az.

Additional Inter-Constructor Properties. In addition to the above-mentioned
properties, we also assume that the following inter-constructor properties hold:

— De Morgan’s Rule: =(C U D) =-CN-D and -(C N D)=-CU-D.
— Negating Quantifiers Rule: =3R.C' =VR.-C and -VR.C' = 3R.—-C.

The above two properties are needed to convert a concept description into nega-
tion normal form (NNF), i.e., the negation operator appears only in front of a
concept name. Note that the above properties affect the type of negation, con-
junction, and disjunction functions that may be used in the generic framework.

3.2 Knowledge Bases with Uncertainty

As in the classical counterpart, a knowledge base X' in the generic framework is
a triple (T, R, A), where T is a TBox, R is an RBox, and 4 is an ABox.

An interpretation Z satisfies a knowledge base X (or Z = X)) iff it satisfies
each element of X (i.e., T, R, and A). We say that X' is satisfiable (or X' ¥ 1)
iff there exists an interpretation Z that satisfies 3. Similarly, X' is unsatisfiable
(or X |= 1) iff there does not exist any interpretation Z that satisfies X.

To provide a generic extension to the knowledge base, there is a need to give
a syntactical and semantical extension to both the intensional (TBox and RBox)
and extensional knowledge (ABox).

A TBox T consists of a set of terminological axioms expressed in the form
(C C D,a){fe, fa, fp) or (C =D,a)(fc, fa, fp), where C and D are concepts,
a €V is the certainty that the axiom holds, f. is the conjunction function used
as the semantics of concept conjunction and part of the role exists restriction,
fa is the disjunction function used as the semantics of concept disjunction and
part of the role value restriction, and f, is the propagation function that is used
to propagate the truth value from the LHS of the subsumption to the RHS.

Similar to the description language case, we have identified a set of prop-
erties that should hold for a propagation function. In general, the propagation
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function f, is a combination function, and should satisfy the monotonicity and
bounded value (above) properties, as specified in section 3.1. Note that these
two properties are a subset of those required by the conjunction functions, and
they are needed for similar reasons as the conjunction case. Some commonly
used propagation functions are the algebraic product x and the standard min
function.

As usual, the concept definition (C' = D, a){f., fa, fp) is defined as (C C D,
Oé) (fCa fd; fp) and <D CC, a)(fCa fda fp)

The RBox is similar to TBox except that we have role axioms instead of
terminological axioms. In addition, only a propagation function is specified, but
not a conjunction or disjunction functions. Since existing DL frameworks with
uncertainty do not allow role conjunction or role disjunction, we do not consider
them in the generic framework either.

An ABox A consists of a set of assertions of the form (a : C,a)(f., f4,—) or
{(a,b) : R,a)(—,—, —), where a and b are individuals, C' is a concept, R is a role,
a €V, f. is the conjunction function, and f; is the disjunction function. Note
that, unlike in axioms, the propagation function is not needed in the assertion,
hence we use “—” as the placeholder to keep the uniformity of the presentation.

3.3 Knowledge Representation

In this section, we first illustrate the capabilities of the generic framework for
representing classical DL. We then show how existing DLs with uncertainty can
be represented by the generic framework.

Ezample 1 (Classical DL). The classical DL knowledge base can be represented
in the generic framework as follows. The certainty lattice is defined as £ = (V, <),
where V = {0,1}, with maz as the join operator @ and min as the meet op-
erator ®. Also, the negation operator is defined as ~0 =1 and ~1 = 0. The
certainty value associated with each axiom and assertion is set to 1. Finally, the
conjunction function (f.) is min, the disjunction function (fy) is maz, and the
propagation function (f,) is min. For example, consider the following classical
knowledge base:
T={(Parent = Person N 3(hasChildByBirth.Person
U hasStepChild.Person L hasAdoptedChild.Person)),
(Mother = Parent M Female)}
A={(Mary : Person 1 Female),
((Mary, Joe) : hasStepChild), (Joe : Person)}
This knowledge base can be represented in the generic framework as follows:
T={(Parent = Personl 3(hasChildByBirth.Person Ll hasStepChild.
Personll hasAdoptedChild.Person), 1) {(min,max, min),
(Mother = Parent M Female, 1){(min, —, min)}
A={{Mary : Person 1N Female, 1){min,—, —),
((Mary, Joe) : hasStepChild, 1){—, —, —), (Joe : Person,1){(—,—, =)}
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Ezample 2 (Fuzzy DL). Most of the proposed fuzzy DL (‘most’ because our
framework supports only ALC) can be represented in the generic framework by
setting the certainty lattice as £ = (V, <), where V = (][0, 1] is the set of closed
intervals [a, (] in [0, 1] such that @ < 3. The negation operator in this case is
defined as ~([ay,a3]) = [1 — a2,1 —a4]. In [5,13,15,16, 18], the meet operator is
inf (infimum) and the join operator is sup (supremum). On the other hand, [17]
uses min as the meet operator, and max as the join. The conjunction function
used in all these proposals is min, whereas the disjunction function uses mazx.
Note that existing proposals rarely allow certainty values to be associated with
both axioms and assertions. Moreover, they do not discuss how to combine the
certainty value of an assertion with the certainty value of an axiom, and hence
existing frameworks do not specify any propagation function.

As an example, suppose we have the following fuzzy knowledge base:

T={((Old U WellEducated) N LikesLearning C Knowledgeable > 0.8)}

A={{John : Old > 0.6}, (John : WellEducated > 0.7),

(John : LikesLearning = 0.9)}

Then, we could infer that John is knowledgeable with degree in [0.7, 0.9].
This knowledge base can be represented in the generic framework as follows:

T={{(0ld U WellEducated) N LikesLearning C Knowledgeable,[0.8,1])

(min, maz, min)}

A={(John : Old,[0.6,1]){—, —, =), (John : WellEducated,[0.7,1]){(—, —, —),
(John : LikesLearning,[0.9,0.9])(—, —, —)}
We obtain (John : Knowledgeable, [0.7,0.9])(—, —, —) as the inference result.

Ezample 8 (Probabilistic DL). A possible certainty lattice for probabilistic DL
is £L=(V,<), where V = ([0, 1], with negation operator sets to be ~ ([a1,as])
=[1 —a2,1 — a;]. Note that this allows us to express both interval probability
(such as [0.4, 0.8]) and exact probability (e.g., [0.8, 0.8]).

Currently existing probabilistic extensions to DLs, such as [3,4, 7, 8], support
mainly conditional constraints. In the generic framework, we view a rule as a
conditional statement. As such, let a be some value from the certainty lattice,
a conditional constraint of the form P(A | B) : a can be expressed as the rule
A€ B in IB framework of logic programming, which in turn can be expressed
as (B C A, a) in our generic framework.

For illustration purpose, we show how a simple knowledge base with condi-
tional constraints from [4] can be represented in our generic framework. Consider
a knowledge base with the following expressions:

T ={{PacemakerPatient C HeartPatient),

((3hasPrivateInsurance.{ Yes}| HeartPatient)[0.9, 1]) }

A={((PacemakerPatient|{ John})[0.8,1])}

Then, one could infer that {((FhasPrivateInsurance.{ Yes}|{John})[0.72,1])}
The above knowledge base can be expressed in the generic framework as follows:

T={{PacemakerPatient C HeartPatient,[1,1]){—, —, x),

(HeartPatient C JhasPrivateInsurance.{ Yes},[0.9,1])(—, —, x)}

A={(John : PacemakerPatient,[0.8,1]){—,—,—)}
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With the first axiom and the first assertion, we infer that John is HeartPatient
with probability x([0.8,1],[1,1]) = [0.8,1] (since f, in the first axiom is x).
Then, this assertion together with the second axiom allow us to infer that John
has private insurance with probability x([0.8,1],[0.9,1]) = [0.72, 1] (since the f,
in the second axiom is x), as inferred in [4].

Unlike in other uncertainty formalisms, reasoning with probability requires
extra information/knowledge. Hence, although our framework can easily handle
simple probabilities, such as independent events and mutually exclusive events,
more complex probability modes such as positive/negative correlation [9], igno-
rance [9], and conditional independence [14] are still under investigation.

Ezample 4 (Possibilistic DL). Hollunder [6] is the only proposal that gives a
possibilistic extension to DL. Here, the possibility (II) and necessity (N) degrees
can be represented by the certainty lattice £ = (V, <), where V = C[0, 1], with
negation operator sets to be ~([a1,az2]) = [1 — a2,1 — a1]. The conjunction and
propagation functions are min, and the disjunction function is mazx.
As an example, in [6], we have the following knowledge base:
T={(Jowns.Porsche C RichPerson U CarFanatic > NO0.8),
(RichPerson C Golfer > I10.7)}
A={{Tom : Jowns.Porsche > N1), {Tom : ~CarFanatic > N0.7)}
Then, according to [6], one could infer that (Tom : Golfer > I10.7).
The above knowledge base can be simulated in the generic framework as follows:
T={{(Jowns.Porsche C RichPerson U CarFanatic,[0.8,1])
(min, max,min), (RichPerson C Golfer,[0.7,1])(—, —, min)}
A={{Tom : Jowns.Porsche,[1,1]){min, —, —),
(Tom : ~CarFanatic,[0.7,1]){—, —, =)}
The result of the inference is (Tom : Golfer,[0.7,1])(—, —, —), as obtained in [6].

4 Conclusion and Future Work

We have proposed a generic framework that allows us to unify and/or generalize
various extensions of DLs with uncertainty, taking an axiomatic approach. In
particular, we abstracted away both the underlying notion of uncertainty (fuzzy
logic, probability, possibilistic logic), and the way in which the constructors in
the description language are interpreted. This was done by identifying the es-
sential properties that various combination functions should possess in order
to realize our unifying framework. We are currently investigating ways to spec-
ify generic reasoning services that the proposed framework should support, for
which we have some partial result. Other future work includes extending this
framework to a more expressive DL, for instance SHOZN . A study of suitable
query processing and optimization techniques is an important future work. An
implementation of the proposed generic framework is underway.
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Abstract. In previous work, we have introduced probabilistic description logic
programs (or pdl-programs), which are a combination of description logic pro-
grams (or dl-programs) under the answer set and well-founded semantics with
Poole’s independent choice logic. Such programs are directed towards sophisti-
cated representation and reasoning techniques that allow for probabilistic uncer-
tainty in the Rules, Logic, and Proof layers of the Semantic Web. In this paper,
we continue this line of research. We concentrate on the special case of strati-
fied probabilistic description logic programs (or spdl-programs). In particular, we
present an algorithm for query processing in such pdl-programs, which is based
on a reduction to computing the canonical model of stratified dl-programs.

1 Introduction

The Semantic Web initiative [2,9] aims at an extension of the current World Wide Web
by standards and technologies that help machines to understand the information on
the Web so that they can support richer discovery, data integration, navigation, and
automation of tasks. The main ideas behind it are to add a machine-readable meaning to
Web pages, to use ontologies for a precise definition of shared terms in Web resources,
to make use of KR technology for automated reasoning from Web resources, and to
apply cooperative agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [30,18] (recommended by the W3C),
is currently the highest layer of sufficient maturity. OWL consists of three increasingly
expressive sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL Lite and
OWL DL are essentially very expressive description logics with an RDF syntax [18].
As shown in [16], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowl-
edge base (un)satisfiability in the description logic SHZF (D) (resp., SHOZN (D)).
On top of the Ontology layer, the Rules, Logic, and Proof layers of the Semantic Web
will be developed next, which should offer sophisticated representation and reasoning
capabilities. As a first effort in this direction, RuleML (Rule Markup Language) [3] is
an XML-based markup language for rules and rule-based systems, whereas the OWL
Rules Language [17] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the
Rules and the Ontology layer. In particular, it is crucial to allow for building rules on top

* Alternate address: Institut fiir Informationssysteme, Technische Universitit Wien, Favoriten-
straBBe 9-11, A-1040 Vienna, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at.
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of ontologies, that is, for rule-based systems that use vocabulary from ontology knowl-
edge bases. Another type of combination is to build ontologies on top of rules, which
means that ontological definitions are supplemented by rules or imported from rules.
Towards this goal, the works [7,8] have proposed description logic programs (or dl-
programs), which are of the form KB = (L, P), where L is a knowledge base in a de-
scription logic and P is a finite set of description logic rules (or dl-rules). Such dl-rules
are similar to usual rules in logic programs with negation as failure, but may also con-
tain queries to L in their bodies, which are given by special atoms (on which possibly
default negation may apply). Another important feature of dl-rules is that queries to L
also allow for specifying an input from P, and thus for a flow of information from P
to L, besides the flow of information from L to P, given by any query to L. Hence, de-
scription logic programs allow for building rules on top of ontologies, but also (to some
extent) building ontologies on top of rules. In this way, additional knowledge (gained
in the program) can be supplied to L before querying. The semantics of dl-programs
was defined in [7] and [8] as an extension of the answer set semantics by Gelfond and
Lifschitz [12] and the well-founded semantics by Van Gelder, Ross, and Schlipf [29],
respectively, which are the two most widely used semantics for nonmonotonic logic
programs. The description logic knowledge bases in dl-programs are specified in the
well-known description logics SHZF (D) and SHOZN (D).

In [22], towards sophisticated representation and reasoning techniques that also al-
low for modeling probabilistic uncertainty in the Rules, Logic, and Proof layers of the
Semantic Web, we have presented probabilistic description logic programs (or pdl-
programs), which generalize dl-programs under the answer set and well-founded se-
mantics by probabilistic uncertainty. They have been developed as a combination of
dl-programs with Poole’s independent choice logic (ICL) [25].

It is important to point out that Poole’s ICL is a powerful representation and rea-
soning formalism for single- and also multi-agent systems, which combines logic and
probability, and which can represent a number of important uncertainty formalisms,
in particular, influence diagrams, Bayesian networks, Markov decision processes, and
normal form games [25]. Furthermore, Poole’s ICL also allows for natural notions of
causes and explanations as in Pearl’s structural causal models [10].

In this paper, we continue this line of research. We concentrate on the special case of
stratified pdl-programs (or spdl-programs). In particular, as a main new contribution, we
present an algorithm for query processing in spdl-programs. It is based on a reduction
to computing the canonical model of stratified dl-programs, which can be done by a
finite sequence of finite fixpoint iterations. This shows especially that query processing
in spdl-programs is conceptually easier than query processing in general pdl-programs,
which is reducible to computing the set of all answer sets of general dl-programs and
solving linear optimization problems. To my knowledge, this paper and [22] are the first
works that combine description logic programs with probabilistic uncertainty.

The rest of this paper is organized as follows. In Section 2, we recall the description
logics SHZF (D) and SHOZN (D) as well as stratified description logic programs.
Section 3 defines stratified probabilistic description logic programs, and Section 4 deals
with query processing in such programs. In Section 5, we discuss related work. Sec-
tion 6 summarizes the main results and gives an outlook on future research.
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2 Preliminaries

In this section, we first recall the description logics SHZF(D) and SHOZN (D). We
then recall positive and stratified description logic programs (or dl-programs) under
their canonical semantics [7], which combine description logics and normal programs.
They consist of a knowledge base L in a description logic and a finite set of description
logic rules P. Such rules are similar to usual rules in logic programs with negation as
failure, but may also contain queries to L, possibly default negated.

2.1 SHIF(D)and SHOIN (D)

We first describe SHOZN (D). We assume a set D of elementary datatypes. Each
d € D has a set of data values, called the domain of d, denoted dom(d). Let dom(D) =
Ugep dom(d). A datatype is either an element of D or a subset of dom(D) (called
datatype oneOf). Let A, R4, Rp, and I be nonempty finite pairwise disjoint sets of
atomic concepts, abstract roles, datatype roles, and individuals, respectively. Let R,
denote the set of all inverses R~ of abstract roles R € R 4.

A role is an element of R4 UR; UR p. Concepts are inductively defined as fol-
lows. Every C € A is a concept, and if 01,02,... €I, then {01, 02,...} is a concept
(called oneOf). If C and D are concepts and if Re R4 UR, then (C 11 D), (C'UD),
and —~C' are concepts (called conjunction, disjunction, and negation, respectively), as
well as AR.C,VR.C, >nR, and <nR (called exists, value, atleast, and atmost restric-
tion, respectively) for an integer n > 0. If d€ D and U € Rp, then 3U.d, YVU.d, >nU,
and <nU are concepts (called datatype exists, value, atleast, and atmost restriction, re-
spectively) for an integer n > 0. We write T and L to abbreviate C' L —~C and C' M —C,
respectively, and we eliminate parentheses as usual.

An axiom is of one of the following forms: (1) C'C D, where C and D are concepts
(concept inclusion); (2) RC S, where either R, S € R4 or R, S € Rp (role inclusion);
(3) Trans(R), where R € R 4 (transitivity); (4) C(a), where C' is a concept and a € I
(concept membership); (5) R(a, b) (resp., U(a,v)), where R € R4 (resp., U € Rp) and
a,b €l (resp., a €I and v € dom(D)) (role membership); and (6) a =b (resp., a #b),
where a, b € I (equality (resp., inequality)). A knowledge base L is a finite set of axioms.
For decidability, number restrictions in L are restricted to simple R € R 4 [19].

The syntax of SHZF(D) is as the above syntax of SHOZN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

For the semantics of SHZF (D) and SHOZN (D), we refer the reader to [16].

Example 2.1. An online store (such as amazon.com) may use a description logic knowl-
edge base to classify and characterize its products. For example, suppose that (1) text-
books are books, (2) personal computers and cameras are electronic products, (3) books
and electronic products are products, (4) every product has at least one related product,
(5) only products are related to each other, (6) tb_ai and tb_lp are textbooks, which are
related to each other, (7) pc_tbm and pc_hp are personal computers, which are related to
each other, and (8) ¢bm and hp are providers for pc_ibm and pc_hp, respectively. This
knowledge is expressed by the following description logic knowledge base L :

Textbook T Book; PC U Camera T Electronics; Book LI Electronics T Product;
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Product T > 1 related; > 1 related LI > 1 related” T Product;
Textbook(tb_ai); Textbook(tblp); PC(pcibm); PC(pc-hp);
related (tb_ai, tb_lp); related(pc_ibm, pc_hp);

provides(ibm, pc_ibm); provides(hp, pc_hp).

2.2 Syntax of Description Logic Programs

We assume a function-free first-order vocabulary ¢ with nonempty finite sets of con-
stant and predicate symbols, and a set X’ of variables. A term is a constant symbol
from @ or a variable from X'. If p is a predicate symbol of arity k>0 from & and
t1,...,tg are terms, then p(ty,. .., tx) is an atom. A negation-as-failure (NAF) literal
is an atom a or a default-negated atom not a. A normal rule r is of the form

a<«—by,...,bg,notbgy1,...,n0tby,,, m>k>0, €))
where a, by, ..., b, are atoms. We refer to a as the head of r, denoted H (r), while
the conjunction by, ..., bg, not byy1,...,not b, is the body of r; its positive (resp.,

negative) partis by, ..., by, (resp., not by 1, ..., notby,). We define B(r) = BT (r)U
B~ (r), where BT (r) = {b1,...,bx} and B~ (r) = {bxs1,...,bm}. A normal pro-
gram P is a finite set of normal rules. Informally, a dl-program consists of a descrip-
tion logic knowledge base L and a generalized normal program P, which may contain
queries to L. In such a query, it is asked whether a certain description logic axiom or its
negation logically follows from L or not. Formally, a dl-query Q(t) is either

(a) aconcept inclusion axiom F’ or its negation —F'; or
(b) of the forms C'(t) or =C(t), where C'is a concept and ¢ is a term; or
(c) of the forms R(t1,t2) or =R(t1,t2), where R is arole and ¢y, to are terms.

A di-atom has the form DL[S10p,p1, ..., Sm0p,, Pm; Q](t), where each S; is a con-
cept or role, op; € {W, U}, p; is a unary resp. binary predicate symbol, Q(t) is a dl-
query, and m > 0. We call p1, ..., py, its input predicate symbols. Intuitively, op, =W
(resp., op; =Y) increases .S; (resp., =.5;) by the extension of p;. A dl-rule r is of
form (1), where any b € B(r) may be a dl-atom. A dl-program KB = (L, P) consists
of a description logic knowledge base L and a finite set of dl-rules P. Ground terms,
atoms, literals, etc., are defined as usual. The Herbrand base of P, denoted HB p, is
the set of all ground atoms with standard predicate symbols in P and constant symbols
in @. Let ground(P) be the set of all ground instances of dl-rules in P w.r.t. HBp.

Example 2.2. Consider the dl-program KB; = (L1, Py), where L; is the description
logic knowledge base from Example 2.1, and P is the following set of dl-rules:

(1) pe(pel); pe(pe2); pe(pe-3);

(2) brand_new(pc.1); brand_new(pc-2);

(3) wendor(dell,pc_1); wvendor(dell,pc2); wvendor(dell,pc-3);

4)  avoid(X) «— DL[Camera](X), not offer(X);

(5) offer(X) <« DL[PC W pc; Electronics](X), not brand_new(X);
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(6) provider(P
(7)  provider(P
8) similar(X,Y) « DLlrelated](X,Y);

)  similar(X, Z) < similar(X,Y), similar(Y, Z).

vendor(P, X), DL[PC W pc; Product](X);
D L[provides|(P, X ), DL[PC W pc; Product](X);

) —
) —

The above dl-rules express that (1) pc_1, pc_2, and pc_3 are additional personal com-
puters, (2) pc_1 and pc_2 are brand new, (3) dell is the vendor of pc_1, pc_2, and pc_3,
(4) a customer avoids all cameras that are not on offer, (5) all electronic products that
are not brand new are on offer, (6) every vendor of a product is a provider, (7) every
entity providing a product is a provider, (8) all related products are similar, and (9) the
binary similarity relation on products is transitively closed.

2.3 Semantics of Positive Description Logic Programs

In the sequel, let KB=(L, P) be a dl-program. An interpretation I relative to P is any
I C HBp. We say that I is a model of a € HB p under L, denoted I =y, a, iffa € I. We
say that [ is a model of a ground dl-atom a = DL[S10p; p1, - - -, S 0P, Pm; Q) (C) un-
der L, denoted I =1, a,iff LU J~, A;(I) = Q(c), where A;(I) ={S;(e) | pi(e)el},
for op; =W; and A;(I) = {—S;(e) | p;(e)€I}, for op; =J. A ground dl-atom a is mono-
tonic relative to KB = (L, P) iff I CI' C HBp implies thatif I =1, a then I’ =1, a. In
this paper, we consider only monotonic ground dl-atoms, but observe that one can also
define dl-atoms that are not monotonic; see [7]. We say that I is a model of a ground
dl-rule r iff I =1 H(r) whenever I =, B(r), that is, I =1, a for all a € BT (r) and
I'W~p a for all a€ B~ (r). We say that I is a model of a dl-program KB = (L, P),
denoted I |= KB, iff I =1, r for every r € ground(P). We say that KB is satisfiable
(resp., unsatisfiable) iff it has some (resp., no) model.

We say that KB=(L, P) is positive iff no dl-rule in P contains default-negated
atoms. Like ordinary positive programs, every positive dl-program KB is satisfiable and
has a unique least model, denoted M gy, that canonically characterizes its semantics.

2.4 Semantics of Stratified Description Logic Programs

We next define stratified dl-programs and their canonical semantics. They are intuitively
composed of hierarchic layers of positive dl-programs linked via default negation. Like
ordinary stratified normal programs, they are always satisfiable and can be assigned a
canonical minimal model via a number of iterative least models.

For any dl-program KB = (L, P), we denote by DLp the set of all ground dl-atoms
that occur in ground(P). An input atom of a € DLp is a ground atom with an in-
put predicate of a and constant symbols in @. A (local) stratification of KB = (L, P)
is a mapping A\: HBpUDLp — {0,1,...,k} such that (i) A(H(r)) > \(b") (resp.,
MH (1)) > A(V)) for each r € ground(P) and ¥ € B*(r) (resp., b’ € B~(r)), and
(i) A(a) > A(b) for each input atom b of each a € DLp, where k > 0 is the length of \.
Foric{0,...,k}, let KB; = (L, P;)=(L,{r € ground(P) | N(H(r)) = i}), and let
HBp, (resp., HBp,)) be the set of all b € HB p such that A(b) =i (resp., A(b) <4). A dI-
program KB = (L, P) is (locally) stratified iff it has a stratification A\ of some length
k > 0. We define its iterative least models M; C HBp with i € {0, ..., k} as follows:
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(i) My is the least model of KB;
(i) if 7> 0, then M; is the least model of KB; such that M;|HBp, = M;_1|HBp, .

The canonical model of the stratified dl-program KB, denoted M kp, is then defined
as My. Observe that Myp is well-defined, since it does not depend on a particular \.
Furthermore, M g is in fact a minimal model of KB.

3 Stratified Probabilistic Description Logic Programs

In this section, we define stratified probabilistic dl-programs as a combination of dl-
programs with Poole’s independent choice logic (ICL) [25]. Poole’s ICL is based on
ordinary acyclic logic programs under different “atomic choices”, where each atomic
choice along with an acyclic logic program produces a first-order model, and one then
obtains a probability distribution over the set of first-order models by placing a distri-
bution over the different atomic choices. In stratified probabilistic dl-programs, we here
use stratified dI-programs rather than ordinary acyclic logic programs.

3.1 Syntax

We assume a function-free first-order vocabulary @ with nonempty finite sets of con-
stant and predicate symbols, and a set of variables X, as in Section 2. We use HBg
(resp., HU ) to denote the Herbrand base (resp., universe) over @. In the sequel, we as-
sume that HB ¢ is nonempty. We define classical formulas by induction as follows. The
propositional constants false and true, denoted L and T, respectively, and all atoms
are classical formulas. If ¢ and ¢ are classical formulas, then also —¢ and (¢ A1)).
A conditional constraint is of the form (v|¢)[l, u] with reals I, u €[0,1] and classi-
cal formulas ¢ and 1. We define probabilistic formulas inductively as follows. Every
conditional constraint is a probabilistic formula. If ' and G are probabilistic formu-
las, then also —F and (F' A G). We use (F'V G), (F < G), and (F' < G) to abbreviate
—(=FA=Q),~(=F ANG),and (=(=F A G) A =(F A —Q)), respectively, and adopt the
usual conventions to eliminate parentheses. Ground terms, ground formulas, substitu-
tions, and ground instances of probabilistic formulas are defined as usual.

A choice space C is a set of pairwise disjoint and nonempty sets A C HBg. Any
member A € C' is called an alternative of C and any element a € A an atomic choice
of C. A total choice of C'is aset BC HBg such that [ BN A|=1forall A€ C. A prob-
ability 1 on a choice space C' is a probability function on the set of all total choices
of C. Since C and all its alternatives are finite, i can be defined by (i) a mapping
p: JC —10,1] such that > 4 p(a) =1 for all AcC, and (i) p(B) = IIye pu(b)
for all total choices B of C'. Intuitively, (i) associates a probability with each atomic
choice of C, and (ii) assumes independence between the alternatives of C.

A probabilistic dl-program (or pdl-program) KB = (L, P,C, 1) consists of a dl-
program (L, P), a choice space C such that (i) | JC C HBp and (ii) no atomic choice
in C coincides with the head of any dl-rule in ground(P), and a probability p on C. A
stratified probabilistic dl-program (or spdl-program) is a pdl-program KB=(L, P, C, 1)
where (L, P) is stratified. A probabilistic query to KB has the form ?F or the form
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?(Bla)[L, U], where F is a probabilistic formula, 3, « are classical formulas, and L, U
are variables. The correct answer to 7F is the set of all substitutions # such that F'0 is
a consequence of KB. The tight answer to ?(5|a)[L, U] is the set of all substitutions 6
such that ?(3|a)[L, U]0 is a tight consequence of KB. In the following paragraphs, we
define the notions of consequence and tight consequence.

Example 3.1. Consider the spdl-program KB, = (Ly, P1,C1, pu1), where Ly is as in
Example 2.1, and P is as in Example 2.2 except that the dl-rules (4) and (5) are replaced
by the dl-rules (4”) and (5°), respectively, and the dl-rules (10) and (11) are added:

4") avoid(X) «— DL[Camera](X), not offer(X), avoid_pos;

(5°) offer(X) <« DL[PCW pc; Electronics](X), not brand_new(X), offer_pos;
(10) buy(C, X) < needs(C, X), view(X), notavoid(X), v_buy_pos;

(11) buy(C, X) < needs(C, X), buy(C,Y), also_buy (Y, X), a_buy_pos.

Furthermore, let Cy be given by {{avoid_pos, avoid_neg}, {offer_pos, offer_neg},
{v_buy_pos, v_buy_neg}, {a_buy_pos, a_buy_neg}}, and let 1 (avoid_pos) = 0.9,
w1 (avoid_neg) = 0.1, py (offer_pos) = 0.9, 1 (offer_neg) = 0.1, pq (v_buy_pos) =
0.7, p1(v-buy_neg) = 0.3, p1(a-buy_pos) = 0.7, and p; (a_buy_neg) = 0.3.

Here, the new dl-rules (4’) and (5°) express that the dl-rules (4) and (5) actually
only hold with the probability 0.9. Furthermore, (10) expresses that a customer buys a
needed product that is viewed and not avoided with the probability 0.7, while (11) says
that a customer buys a needed product x with probability 0.7, if she bought another
product ¥, and every customer that previously had bought y also bought x.

In a probabilistic query, one may ask for the tight probability bounds that a cus-
tomer c buys a needed product z, if (i) ¢ bought another product y, (ii) every customer
that previously had bought y also bought x, (iii) x is not avoided, and (iv) c has been
shown product z (the result to this query may, e.g., help to decide whether it is useful
to make a customer automatically also view product = when buying y):

?(buy(c, x) | needs(c, x) Nbuy(c, y) Aalso_buy(y, ) Aview () Anot avoid(z))[L, U] .

3.2 Semantics

A world I is a subset of HBg. We use Zg to denote the set of all worlds over @. A vari-
able assignment o maps each variable X € X' to an element of HU ¢. It is extended to
all terms by o(c) = ¢ for all constant symbols ¢ from @. The truth of classical formulas
¢ in I under o, denoted I =, ¢ (or I |= ¢ when ¢ is ground), is inductively defined by:

o ]/ ':[, p(tl,...7tk) iffp(O’(tl)7...,J(tk)) el;
o [l=, —diffnot ] =y ¢sand I =, (6 AW)iff I Eo ¢ and I =y 1.

A probabilistic interpretation Pr is a probability function on Zg (that is, since Zg
is finite, a mapping Pr: Zg — [0, 1] such that all Pr(I) with I € Zg sum up to 1).
The probability of a classical formula ¢ in Pr under a variable assignment o, denoted
Pr,(¢) (or Pr(¢) when ¢ is ground), is defined as the sum of all Pr(I) such that
I €Zp and I |=, ¢. For classical formulas ¢ and ¢ with Pr,(¢) > 0, we use Pr, (1|¢)
to abbreviate Pr, (¢ A @) / Pry(¢). The truth of probabilistic formulas F' in Pr under
a variable assignment o, denoted Pr |=, F, is inductively defined as follows:
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o Pri=s (Y[®)[l, u] iff Pro(¢) =0o0r Pro(y]¢) €[l,ul ;
o Pr =, —F iff not Pr |=, F';and Pr |=, (FAG) iff Pr =, F and Pr |=, G.

A probabilistic interpretation Pr is a model of a probabilistic formula F' iff Pr =,
F for every variable assignment 0. We say that Pr is the canonical model of an spdl-
program KB = (L, P,C, p) iff every world I € Zg with Pr(I)>0 is the canonical
model of (L, PU{p < | p € B}) for some total choice B of C such that Pr(I) = u(B).
Notice that every KB has a unique canonical model Pr. A probabilistic formula F' is
a consequence of KB, denoted KB |~ F, iff every model of KB is also a model of F.
A conditional constraint (y|¢)[l, u] is a tight consequence of KB, denoted KB |~ ,; .,
(¥|@)[l, ul, iff I (resp., u) is the infimum (resp., supremum) of Pr, (1|¢) subject to all
models Pr of KB and all variable assignments o with Pr,(¢) > 0. Here, we assume
that [ =1 and u =0, when Pr,(¢) =0 for all models Pr of KB and all .

4 Query Processing

The canonical model of an ordinary positive (resp., stratified) normal logic program P
has a fixpoint characterization in terms of an immediate consequence operator 1p,
which generalizes to dl-programs. This can be used for a bottom-up computation of the
canonical model of a positive (resp., stratified) dl-program, and thus also for computing
the canonical model of an spdl-program and for query processing in spdl-programs.

4.1 Canonical Models of Positive Description Logic Programs

For a dl-program KB = (L, P), define the operator Txp on the subsets of HBp as
follows. For every I C HB p, let

Tkp(I) = {H(r) | r € ground(P), I |=r ¢ forall € B(r)}.

If KB is positive, then Tkxp is monotonic. Hence, Txp has a least fixpoint, denoted
Ifp(Tkp). Furthermore, {fp(T'xp) can be computed by finite fixpoint iteration (given
finiteness of P and the number of constant symbols in ). For every I C HBp, we
define Ti,5(I) = I,if i = 0, and Tip(I) = Txp(Tip (1)), if i > 0.

Theorem 4.1. For every positive dl-program KB = (L, P), it holds that lfp(Txp) =
Mgp. Furthermore, Ifp(Txkp) = Uiy Ticp(0) = T (0), for some n> 0.

4.2 Canonical Models of Stratified Description Logic Programs

We next describe a fixpoint iteration for stratified dl-programs. Using Theorem 4.1, we
can characterize the canonical model Mg of a stratified dl-program KB = (L, P) as
follows. Let Tip (1) = Thp(I) U I, for all i > 0.

Theorem 4.2. Suppose KB = (L, P) has a stratification X of length k > 0. Define M; C
HBp,i€{-1,0,...,k}, asfollows: M_, =0, and M; = T}éjgi(Mi_l)fori >0, where
n; >0 such that Ty (M;_1) = Tyig™ (M;_y). Then, My, = M.
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4.3 Query Processing in Stratified Probabilistic Description Logic Programs

Fig. 1 shows Algorithm canonical_model, which computes the canonical model Pr of a
given spdl-program KB = (L, P, C, u1). This algorithm is essentially based on a reduc-
tion to computing the canonical model of stratified dl-programs (see step (4)), which
can be done using the above finite sequence of finite fixpoint iterations.

Algorithm canonical_model

Input: spdl-program KB = (L, P, C, p).
Output: canonical model Pr of KB.

1. for every interpretation I € Zg do

2. Pr(I):=0;

3. for every total choice B of C do begin

4. compute the canonical model I of the stratified dl-program (L, PU{p « | p € B});
5. Pr(I):= u(B);

6. end;

7. return Pr.

Fig. 1. Algorithm canonical_model

Fig. 2 shows Algorithm tight_answer, which computes tight answers = { L /I, U/u}
for a given query ?(8|«)[L, U] to a given spdl-program KB. The algorithm first com-
putes the canonical model of KB in step (1) and then the tight answer in steps (2)—(8).

Algorithm tight_answer

Input: spdl-program KB = (L, P, C, 11) and probabilistic query ?(8|«)[L, U].
Output: tight answer § = {L/l, U/u} for ?(8|a)[L, U] to KB.

Pr := canonical_model (KB);
l:=1;
u = 0;

for every ground instance 3’|a’ of 3|« do begin
l:=min(l, Pr(3'|a));
u := max(u, Pr(8’'|a’));

end;

return 0 ={L/l,U/u}.

PN RPN

Fig. 2. Algorithm tight_answer

5 Related Work

Related approaches can be roughly divided into (a) description logic programs with
non-probabilistic uncertainty, (b) probabilistic generalizations of description logics, and
(c) probabilistic generalizations of web ontology languages. Note that related work on
description logic programs without uncertainty is discussed in [7,8,22].
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As for (a), Straccia [28] combines description logic programs with non-probabilistic
uncertainty using interval annotations. To my knowledge, the present paper and [22] are
the first ones on description logic programs with probabilistic uncertainty.

As for (b), Giugno and Lukasiewicz [13] present a probabilistic generalization of the
expressive description logic SHOQ(D) behind DAML+OIL, which is based on lexico-
graphic probabilistic reasoning. In earlier work, Heinsohn [15] and Jaeger [20] present
probabilistic extensions to the description logic ALC, which are essentially based on
probabilistic reasoning in probabilistic logics. Koller et al. [21] present a probabilistic
generalization of the CLASSIC description logic, which uses Bayesian networks as un-
derlying probabilistic reasoning formalism. Note that fuzzy description logics, such as
the ones by Straccia [26,27], are less closely related to probabilistic description logics,
since fuzzy uncertainty deals with vagueness, rather than ambiguity and imprecision.

As for (c), especially the works by Costa [4], Pool and Aikin [24], and Ding and
Peng [6] present probabilistic extensions to OWL. In particular, Costa’s work [4] is
semantically based on multi-entity Bayesian networks, while [6] has a semantics in
standard Bayesian networks. In closely related work, Fukushige [11] proposes a ba-
sic framework for representing probabilistic relationships in RDF. Finally, Nottelmann
and Fuhr [23] present pPDAML+OIL, which is a probabilistic generalization of the web
ontology language DAML+OIL, and a mapping to stratified probabilistic datalog.

6 Summary and Outlook

We have continued the research on probabilistic dl-programs. We have focused on the
special case of stratified probabilistic dl-programs. In particular, we have presented an
algorithm for query processing in such probabilistic dl-programs, which is based on a
reduction to computing the canonical model of stratified dl-programs.

A topic of future research is to further enhance stratified probabilistic dI-programs
towards a possible use for Web Services. This may be done by exploiting and general-
izing further features of Poole’s ICL for dynamic and multi-agent systems [25].
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Abstract

Semantic Web ontologies are based on crisp logic
and do not provide well-defi ned means for express-
ing uncertainty. We present a new probabilistic
method to approach the problem. In our method,
degrees of subsumption, i.e., overlap between con-
cepts can be modeled and computed effi ciently us-
ing Bayesian networks based on RDF(S) ontolo-
gies.

1 Introduction

Ontologies are based on crisp logic. In the real world, how-
ever, relations between entities often include subtleties that
are diffi cult to express in crisp ontologies. RDFS [rdf, 2004]
and OWL [owl], 2003] do not provide standard ways to ex-
press partial overlap and degrees of overlap in general.

This paper presents a method for modeling degrees of over-
lap between concepts. In the following we fi rst introduce the
principles of our method. Then a notation that enables the
representation of degrees of overlap between concepts in an
ontology is presented after which a method for doing infer-
ences based on the notation will be described. For a more
detailed presentation of the method see [Holi, 2004].

2 Modeling Uncertainty in Ontologies

Figure 1 illustrates various countries and areas in the world.
There are important properties in the fi gure, that are not mod-
eled in a crisp partonomy. For example, EU is a bigger part
of Europe than Lapland, and Russia partly overlaps Europe
and Asia.

Our method enables the representation of overlap in con-
cept hierarchies, including class hierarchies and partonomies,
and the computation of overlap between a selected concept
and every other, i.e. referred concept in the hierarchy. The

overlap value is defi ned as follows:

__ |SelectedNRe ferred|
Overlap = TReferred] € [0,1].

Intuitively, the overlap value has the following meaning:
The value is O for disjoint concepts (e.g., Lapland and Asia)
and 1, if the referred concept is subsumed by the selected
one. High values lesser than one imply, that the meaning of
the selected concept approaches the meaning of the referred
one.
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Europe Asia

land

World

Finlan

Russia

EU

World 37*23 = 851

Europe 15*%23 = 345

Asia 18%23 = 414

EU 8%*21 = 168

Sweden 4*9 = 36

Finland 4*9 = 36

Norway 4*9 = 36

Lapland 13*2 = 26 Lapland&(Finland | Sweden | Norway) = 8
Lapland&EU = 16 Lapland&Russia = 2

Russia 18*%19 = 342 Russia&Europe = 57 Russia&Asia = 285

Figure 1: A Venn diagram illustrating countries, areas, their
overlap, and size in the world.

3 Representing Overlap

A concept hierarchy can be viewed as a set of sets and can be
represented by a Venn diagram.

If A and B are sets, then A must be in one of the following
relationships to B.

1. Aisasubsetof B,ie. A C B.

2. A partially overlaps B, i.e. z,y: (rt € ANz € B) A
(ye ANy & B).

3. Aisdisjoint from B, i.e. AN B = ().

Based on these relations, we have developed a simple
graph notation for representing overlap in a concept hierar-
chy as an acyclic overlap graph. Here concepts are nodes,
and a number called mass is attached to each node. The mass
of concept A is a measure of the size of the set correspond-
ing to A, i.e. m(A) = |s(A)|, where s(A) is the set corre-
sponding to A. A solid directed arc from concept A to B
denotes crisp subsumption s(4) C s(B), a dashed arrow
denotes disjointness s(A) N s(B) = (), and a dotted arrow
represents quantifi ed partial subsumption between concepts,
which means that the concepts partially overlap in the Venn



diagram. The amount of overlap is represented by the partial

overlap value p = %_

In addition to the quantities attached to the dotted arrows,
also the other arrow types have implicit overlap values. The
overlap value of a solid arc is 1 (crisp subsumption) and the
value of a dashed arc is O (disjointness). The quantities of the
arcs emerging from a concept must sum up to 1. This means
that either only one solid arc can emerge from a node or sev-
eral dotted arcs (partial overlap). In both cases, additional
dashed arcs can be used (disjointness). Intuitively, the outgo-
ing arcs constitute a quantifi ed partition of the concept. Thus,
the dotted arrows emerging from a concept must always point
to concepts that are mutually disjoint with each other.

Notice that if two concepts overlap, there must be a di-
rected (solid or dotted) path between them. If the path in-
cludes dotted arrows, then (possible) disjointness between the
concepts must be expressed explicitly using the disjointness
relation. If the directed path is solid, then the concepts neces-
sarily overlap.

4 Computing the Overlaps

Computing the overlap is easiest when there are only solid
arcs, i.e. complete subsumption relation between concepts. If
there is a directed solid path from A (selected) to B (referred),

then overlap o = |S(“LXS)(FE)(‘B)| = ZLLE;; If there is a mixed
path then the computation is not as simple. To exploit the
simple case we transform the graph into a solid path structure

according to the following principle:

Transformation Principle 1 Let A be the direct partial sub-
concept of B with overlap value o. In the solid path structure
the partial subsumption is replaced by an additional middle
concept, that represents s(A) N s(B). It is marked to be
the complete subconcept of both A and B, and its mass is
o-m(A).

If A is the selected concept and B is the referred one, then
the overlap value o can be interpreted as the conditional prob-
ability

P(B' = true|A" = true) = [s(4) N s(B)|

EG

where s(A) and s(B) are the sets corresponding to the con-
cepts A and B. A’ and B’ are boolean random variables such
that the value true means that the corresponding concept is a
match to the query, i.e, the concept in question is of interest
to the user.

Based on the above, we chose to use the solid path structure
as a Bayesian network topology. In the Bayesian network the
boolean random variable X’ replaces the concept X of the
solid path structure. The effi cient evidence propagation al-
gorithms developed for Bayesian networks [Finin and Finin,
2001] to take care of the overlap computations.

The joint probability distribution of the Bayesian net-
work is defined by conditional probability tables (CPT)
P(A'|B{, B, ... B),) for nodes with parents B, =1...n,
and by prior marginal probabilities set for nodes without
parents. The CPT P(A'|B{,B),...B.) for a node A’

ey
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can be constructed by enumerating the value combinations
(true/false) of the parents B.,i = 1...n, and by assigning:

2

> m(B)

i€{i:b;=true}

P(A" = true|By = by,...B, =b,) = (A)
(2)

The value for the complementary case P(A’
false|By = by,...B], = b,) is obtained simply by sub-
tracting from 1.

By instantiating the nodes corresponding to the selected
concept and the concepts subsumed by it as evidence (their
values are set “true”), the propagation algorithm returns the
overlap values as posterior probabilities of nodes. The query
results can then be ranked according to these posterior prob-
abilities.

5 Discussion

Overlap graphs are simple and can be represented in RDF(S)
easily. Using the notation does not require knowledge of
probability theory. The concepts can be quantifi ed automati-
cally, based on data records annotated according to the ontol-
ogy, for example.

The problem of representing uncertainty in ontologies has
been tackled previously by using methods of fuzzy logic,
rough sets [Stuckenschmidt and Visser, 2000] and Bayesian
networks [Ding and Peng, 2004; Gu and H.K. Pung, 2004].
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Abstract

This work derives and simulates two choice models
applying the weighted utility theory, a generaliza-
tion of the expected utility theory. It shows one set
of assumptions, which justify the practice of in-
cluding the mean and the variance of a risky alter-
native into a linear utility function of the choice
model. A Monte Carlo simulation provides empiri-
cal evidence on the robustness of the models.

1

Allais paradox shows that our choices commonly violate the
axioms of von Neumann-Morgenstein expected utility the-
ory. But we still commonly apply the expected utility theory
when we model our choices. One possible remedy to this
discrepancy is to build a choice model that uses one gener-
alization of the expected utility theory, the weighted utility
theory.

This paper presents two binomial logit models, which
assume that the decision maker has weighed utility prefer-
ences. The models have been written into a context of a
transportation problem, but naturally they can be applied to
any choice between two risky alternatives.

Axiomatically weighted utility differs from expected util-
ity by a weaker version of the independence axiom.
Weighted utility was first axiomatized by Chew and Mac-
Crimmon, [1979]. Chew [1982] proved that weighted utility
behavior cannot be derived from expected utility by trans-
forming the risky variables. Further axiomatic work has
been continued by Chew [1983], Fishburn [1981, 1983] and
Nakamura [1984, 1985]. Fishburn [1988] contains an in-
formative presentation of the weighted utility theory.

The descriptive strength of weighted utility has been
tested in empirical laboratory experiments [Chew and
Waller, 1986; Camerer 1989; Conlisk 1989]. I do not know
of any choice models where weighted utility is applied.

Introduction
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2 Utility Functionals of the Logit Models

Following the tradition of logit models I formulate a utility
function that is separable in attributes. The simplest utility
function has one sure attribute and one risky attribute. In a
transportation context these can be monetary cost of travel
and travel time, respectively. In the case of discrete distribu-
tion of the risky alternative, the utility functional is:

e ) w)U)
VO=b b S S

m

-b,c

where p(t;) denotes the probability of possible travel time
outcome t;, w(t;) the weight the decision maker places on the
outcome t;, U(t;) the utility of the outcome t;, and c the sure
monetary cost.

An exponential works well as the weight function.

W(Zi): exp(at;)

If a = 0, the weight function gets a value one throughout
the domain and reduces the weighted utility expression to an
expected utility. If o > 0, the traveler emphasizes the poten-
tial of longer travel times. Correspondingly, if a < 0, the
traveler behaves as if he would consider the shorter travel
times as "more weighty" than what expected utility would
warrant.

For the model with continuous distribution of the risky
attribute the assumptions are: t~N(,6°), U = -b;t, and w(t) =
exp(at). With these assumptions the utility functional is:

ﬁft -exp(at)- exp(_(;;_’zuz)jdt

[ exp(‘(;;fz)]dt

V() =b, - b,

—b,c.

This form has the welcome property that it simplifies to

V()=b, —b,(u+ac?)-b,e.



This is a welcome find because it justifies the commonly
practiced ad hoc inclusion of the risky attribute’s variance as
a fully separate explanatory variable in addition to the mean
in the utility expression of an estimated choice model. On
the other hand, it demonstrates that this common practice is
not compatible with the expected utility theory. A demon-
stration of this property in a 3-outcome space is available
from the author by request.

2.1 Parameter restrictions

It is customary to require that a utility function exhibits risk
aversion and monotonicity.

Risk aversion is defined to mean that the utility of the
expected outcome is preferred to the utility of a gamble.
Assuming two arbitrary outcomes, the requirement of risk
aversion simplifies to a requirement that the ratio of weight
functions of the outcomes cannot equal to one, that is, o
should not equal zero. This requirement reflects the fact that
this particular formulation of weighted utility reduces to
expected utility only in the case of risk neutrality.

Monotonicity of utility function in outcomes generalizes
into a requirement that the utility functional exhibits first
order stochastic dominance (FSD). For the discrete model it
is possible to arbitrarily define the range of outcomes as [L,
L2] and thus the range for V[{p(t))}] as [-b;L,,-b;L;]. The
definitions lead to two conditions for FSD: a < 1/(L,-L;)
and a > 0. If the risky attribute has an infinite range of out-
comes, the decision maker violates monotonicity if she is
risk averse, that is, if her o # 0.

3 Monte Carlo Simulations

The Monte Carlo simulations consisted of rounds of first
creating the true choices according to three models: a con-
tinuous risky attribute, a discrete risky attribute, and a sure
attribute, and later taking the created choice data as given
and estimating the three models on each data set.

The weighted utility formulations worked well. In all the
simulation runs the continuous model specification gave
more consistent results than the discrete one, which should
be expected due to the simpler functional form. The true b-
parameters were more consistently retrieved in both specifi-
cations than o. When true value of o was set to strongly
violate FSD, only the continuous model specification was
able to converge reliably and retrieve the correct values. But
when true o was set to 0.15, which still moderately violated
FSD, the discrete model formulation converged each time
and the mean of the 50 parameter estimates (0.1864) was
within two standard deviations of the true value of 0.15.
When the true a-value was set to not violate FSD, the
weighted utility models retrieved the true parameters very
well. The same held when the true behavior was created by
mean value utility, that is to say the true a had a value zero.

When the true behavior was generated by weighted pref-
erences, but was estimated by mean value utility model, the
estimated parameters were consistently downward biased
towards a point where their proportions stay true. This dem-
onstration is something that should be taken into account in
the interpretations of models where the ratio of parameters
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is assumed to not contain a risk premium for the unreliable
attribute, like in the value-of-time estimation. If the true
preferences driving the choices comply with weighted util-
ity, the parameters estimated from a mean value utility
model will produce estimates that include a risk premium.

4 Conclusions

The model simulations demonstrated that the weighted util-
ity logit models give reliable estimates in a wide range of
true weighted utility risk preferences. Especially the discrete
version of the model poses possibilities for situations where
the decision maker tends to succumb to Allais paradox and
bases his decisions on a small number of perceived possible
realizations of the risky alternative.
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Abstract

We address the problem of linking observations
from reality to a semantic web based knowledge
base. Concepts in the biological domain are in-
creasingly being formalized through ontologies,
with an increasing adoption of semantic web stan-
dards. At the same time biology is becoming a data-
centric science, since the increasing availability of
high throughput technologies yields a humanly in-
tractable amount of data describing the behavior
of biological systems at the molecular level. This
creates the need for automated support to interpret
biological data given the pre-existing knowledge
about the biological systems under study. While
this is currently addressed through the analysis of
attributes associated to biological entities, the avail-
ability of ontologies that represent biological sys-
tems makes it possible to improve the extent to
which pre-existing knowledge can be used. The se-
mantic web, in particular, provides a framework to
integrate and create a formalized biological knowl-
edge base. Linking ontological knowledge to ob-
served data is inherently approximate, because of
the quality of observations, the relation between
observed data and entities and the classification of
entities. We present an overall framework project
and its current development status.

1 Introduction

Scientific exploration constantly involves relating experimen-
tal evidence to existing knowledge. In the Life Science fields
existing knowledge is commonly encoded in a corpus of sci-
entific publications. This knowledge is used by scientists to
design and interpret experiments that in turn lead to new dis-
coveries. Traditionally this meant to relate a limited amount
of experimental evidence to pre-defined hypotheses.
Recently, the availability of high-throughput technologies,
such as DNA sequencing, mRNA and proteomic profiling is
challangingchallenging this existing paradigm. Such tech-
nologies allow the observation of the behavior of biological
systems at the molecular level on a system-wide basis. This
means that a humanly intractable amount of data is available,
most of which does not relate to previous hypotheses. Thus
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relating such a large scale experimental evidence to the exist-
ing biological knowledge is essential in order to understand
the phenomenon under study.

Given the vast amount of data generated by high through-
put technologies, this necessitates automated support.

At the same time there is an increasing availability of struc-
tured biological information, in the semantic web framework
in particular. The Gene Ontology[Ashburner et al., 2000] ini-
tiative provides ontologies describing functions of gene prod-
ucts. It currently encompasses more than 17000 terms linked
by relations of inheritance and containment and it is avail-
able in RDF. MGED-ontology' provides an ontology to de-
scribe attributes relevant to mRNA experiments in OWL, and
the BioPAX[The BioPAX workgroup] initiative is defining a
common standard to represent biological pathways and inter-
action networks in OWL. This last initiative is of particular
interest since it provides a common ontological framework
for the unification of different resources. The availability
of such resources makes it possible to partially automatize
the association between experimental evidence and existing
knowledge to effectively lead data analysis.

2 Ontologies and data analysis

Focusing on ontologies that describe the behavior of biologi-
cal systems at the molecular level, there is a range of ontolo-
gies that vary in scope and depth. While available knowledge
of some biological systems is enough to build causal mod-
els, in general such knowledge is limited and most of ontolo-
gies have a low ontological commitment. When dealing with
system-wide observations, this second class of ontologies is
most relevant.

For instance, in the case of mRNA profiling, the behavior
of thousands of genes in a cell in response to some sort of
stimuli is observed. For each gene, measures of its activity are
provided. These data are usually related to Gene Ontology to
derive a functional characterization of the cell response.

Associations of genes to specific classes in Gene Ontology
are determined based on available knowledge. By its seman-
tics, association of a gene to a class implies association of a
gene to its super classes too. Thus a gene is annotated with a
set of classes that act as attributes describing specific biolog-
ical functions.

'www.mged.org



It is common practice to define a subset of relevant genes
from experimental data and to study the incidence of these
attributes derived from Gene Ontology through statistical
tests[Beissbarth et al., 2004; Maere et al., 2005].

Sometimes relations of inheritance and independence are
used to measure “conceptual distances” among genes[Joslyin
et al., 2004].

3 Uncertainty

Uncertainty plays a key role in the task of associating experi-
mental evidence to ontological knowledge, at several levels.

Uncertainty in the definition and relations between classes
plays a limited role. There is not a specific support for uncer-
tainty in OWL, and the definition of ontologies is an ongoing
task where crisp definitions are valuable.

Association between instances and classes is one point
where uncertainty plays a critical role. Almost every on-
tology encodes a confidence in the association through “ev-
idence codes” (describing the kind of supporting evidence)
and eventually a p-value or citations of relevant scientific lit-
erature. See [Karp et al., 2004] for an example of an ontology
for experimental evidence.

Association between data and ontologies is then inherently
uncertain. Uncertainty may come not only from the experi-
mental setup and measurements, but also from the biological
source of variability, and from misconceptions or omissions
in the available knowledge.

4 Our project

The way experimental data are associated to existing ontolo-
gies now does not take into account all the information en-
coded in ontologies and does not provide a way to reason over
related uncertainty. We plan to overcome these limitations by
providing a framework for approximate reasoning based in
ontologies.

In particular, we focus on OWL ontologies describing bi-
ological pathways and on mRNA data. Given an ontology
representing a collection of pathways and related concepts
(including evidence support), and a set of experimental data,
we define a new ontology as the union of the two, represent-
ing observed evidence and the previous knowledge.

Thus we plan to use the structure of previous knowledge to
compute plausibility of concepts being pertinent to observed
conditions. This can be done through a rule based approach,
where inherent structure of pathways ontologies would en-
sure convergence of plausibility distributions.

S Current development

We have developed an infrastructure where ontologies
can be merged and represented. This is based on the
Cytoscape[Shannon et al., 2003] software for molecular in-
teraction analysis which is used as a link to experimental data
and an interactive visualizer for RDF ontologies. Rule sys-
tems for unifying the ontologies and graph transformations to
represent views of ontologies are also provided.

Based on this, we plan to provide a Bayesian network along
with the ontology, or possible derivation of that, and to up-
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date the plausibility of nodes associated to concepts given ev-
idence encoded in roots nodes. This updates involves consid-
ering both the experimental evidence, and uncertainty assess-
ment related to it.

6 Conclusion

The Life Science community is one of the early adopters
of semantic web technologies. The need to represent and
integrate a vast amount of different information is pushing
the development of this technology. The analysis of high-
throughput data poses naturally the need of approximate rea-
soning and uncertainty representation.
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Abstract

Due to the Semantic Web’s decentralised and dis-
tributed management, contradictory information is
and will remain frequent. However, classical rea-
soning systems fail to work properly in the pres-
ence of inconsistencies, because they implicitly or
explicitly assume the ex contradictione quod li-
bet (ECQL) principle stating that anything follows
from contradictory premises. Paraconsistent rea-
soning challenges this ECQL principle.

Stressing practical cases of reasoning on the Web,
this position paper first argues that paraconsistent
reasoning is likely to become a key issue for suc-
cessful deployment of the Semantic Web. Then, it
briefly introduces the main approaches to date to
paraconsistent reasoning.

1 Introduction

Classical and other logic, upon which modern computing is
based, requires the complete absence of contradictions. With
the classical ex contradictione quod libet (ECQL) rule (or
principle of explosion), everything, and thus nothing useful at
all, can be inferred from a contradiction. For instance, from
a contradiction in a train information system can be derived
that the moon is made of green cheese. Nonetheless, incon-
sistencies play an important role in practice (Section 2).

Paraconsistent logics are a rather novel direction in math-
ematical logics that challenge the ECQL principle in order
to allow “reasonable” reasoning in the presence of inconsis-
tencies without introducing more problems than are already
present in the data. Several different approaches to paracon-
sistent logics exist and are briefly outlined in Section 3.

We conclude this article with a perspective for paraconsis-
tent reasoning on the Semantic Web (Section 4).

2 Cases for Paraconsistent Reasoning

Distributed Information Systems

In distributed information systems, like the online informa-
tion systems of European railways companies, contradic-
tory information is frequent. For example, the German rail-
way company might give different arrival times for trains to
Paris than the French railway company, because construction
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works on the track in France have not been entered into the
German system. Human beings can easily cope with such
inconsistencies in various ways (e.g. identify which informa-
tion is more likely or “don’t care”). Reasoning systems on the
(Semantic) Web must equally be able to derive useful conclu-
sions from the “inconsistency-free” premises.

Coping with Change

Belief change is the field of artificial intelligence devoted to
the rational change of belief in the light of new evidence. E.g.,
a train timetable might be updated with new train connec-
tions that have to be taken into account in further reasoning.
Likewise, train connections might have been removed mak-
ing previously drawn conclusions invalid.

In practice, changes like updates to an information system
may cause inconsistencies that cannot be discarded. Standard
methods for belief change are based on classical logic and
hence accept the ECQL principle. As a consequence, they
cannot be used for deriving useful conclusions in presence of
updates causing contradictions.

Inconsistencies Welcome!
In some situations, inconsistencies are even desirable. This
is, e.g., the case when contradictory viewpoints are present
and need to be reconciled. For instance, two ontologies de-
scribing appartment rental offers and appartment sale offers
might well inconsistently describe preferences and prices for
city areas. This obviously should neither prevent considering
both ontologies nor deriving meaningful conclusions in the
same reasoning context (like helping in taking a decision for
buying or renting an appartment). Obviously, human beings
are capable of doing so without applying the ECQL principle,
and so should automated reasoning systems on the Web.
Another example is policy reasoning. At the beginning of a
negotiation towards selling/buying a Web service, the policies
of the buyer and seller might be contradictory. Instead of ap-
plying the ECQL principle, a reasoning system should strive
to overcome the inconsistencies, i.e. find a way to pass a con-
tract acceptable for both the service buyer and seller without
requiring them to change their policies.

“Dialetheias”

In practice, there are cases where contradictions are inherent
to the problem, so-called “dialetheias”. Since such cases arise
in knowledge modelling, they will also arise on the Seman-
tic Web. This is in particular the case with the well known



Liar’s Paradox where a sentence states its own falsity (“this
sentence is not true”).

On the Semantic Web, dialetheias might easily arise though
reification, especially of RDF statements, and through modal-
ities — such as “A believes B” or “A does not believe what B
states” — that are needed e.g. for policy reasoning. Liar sen-
tences can also be indirect consequences of statements that
are themselves unproblematic, e.g. when combining knowl-
edge from different Web resources.

3 Approaches to Paraconsistent Reasoning

Most approaches to paraconsistent logic and reasoning allow
a formula F' and its negation —F' to hold in an interpreation
(or “model”). Major approaches of paraconsistent logics and
reasoning are stressed below:

Relevant Logics

Relevant logics have been first proposed by Anderson and
Belnap. Semantics for such logics based on “different
worlds” have been developed by Routley and Meyer. Con-
junction and disjunction behave in the usual way, but each
world w has an associated world w* such that —A is true in
w iff A is false in w* (not in w). As a consequence, if A is
true in w and false in w*, then A A —A is true in w. Note that
requiring w* = w yields the standard classical logic.

Many- Valued Systems

A multi-valued logic is a logic with more than two truth val-
ues. The formulas that hold in a multi-valued interpretations
are those which have a specific truth-value, the so-called des-
ignated formulas. A multi-valued logic is paraconsistent if it
allows both a formula and its negation to be designated.

The simplest approach uses three truth values: true and
false, like in classical logic, and a third truth-value denoting
“both truth and false” such that if a formual F has this third
truth-value in an interpreation, then so does also —F. Con-
sidering the real numbers between O and 1 instead of discrete
values results in a paraconsistent fuzzy logic.

Non-Adjunctive Systems

A non-adjunctive logic is a logic in which one cannot con-
clude A from A A B. The first non-adjunctive logic, and also
the first paraconsistent logic, ever proposed is the discussive
(or discursive) logic of Jaskowski. In dicussive logic, sev-
eral contributors state “opinions”. Each opinion is consistent
in itself but might be inconsistent with another opinion. A
modal logic (S5) is used to define interpretations: a world
corresponds to a contributor, and in it, all the contributor’s
sentences are true. Thus, A A A can hold in an interpreta-
tion consisting of several worlds, but not in a single world.

Non-Truth-Functional Logics

Non-truth functional logics have been introduced by da
Costa. Their idea is to make negation “non-truth-functional”
while keeping the other connectives like in standard, e.g. clas-
sical, logics. Seeing an interpretation as a function mapping
formulas to O (false) or 1 (true), a non-truth funtional logic
gives rise to defining the truth-value of - A independently of
that of A (while keeping the usual functional dependencies of
the truth-value of A A B, AV B, A = B, etc. to the truth
values of A and B).
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4 Paraconsistency on the Semantic Web

We believe that dealing with inconsistencies will play a cen-
tral role in the emergence of the Semantic Web. Paraconsis-
tent reasoning provides foundations and techniques that will
allow future applications to function properly in the presence
of inconsistencies. In particular, we think that paraconsistent
reasoning will influence the following areas:

Paraconsistency in Ontology Reasoning

Ontology reasoning (e.g. instance checking) on the Seman-
tic Web is usually based on reasoning techniques, e.g. the
tableaux calculus, developed for description logics. There-
fore, a first step towards an “inconsistency-aware” Seman-
tic Web will be to adapt existing reasoning algorithms using
techniques from paraconsistent reasoning.

Paraconsistency in Query Languages

Querying data plays a very important role on the Semantic
Web, as indicated by the multitude of existing Semantic Web
query languages. Building upon ontology reasoning, Seman-
tic Web query languages will likely need to be adapted so as
to work in the presence of inconsistencies.

Paraconsistency and Trust

In a distributed environment like the Semantic Web, where
anyone can author content, trust is a key issue. Conflicts with
classical logic are apparent: for example, different sources
might make conflicting assertions about the trustworthiness
of a site, and users might be interested in more fine-grained
levels of trust besides the binary “trusted” or “not trusted”.
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Abstract

Probabilistic inference will be of special impor-
tance when one needs to know how much we can
say with what all we know given new observa-
tions. Bayesian Network is a graphical probabilis-
tic model with which one can represent probabilis-
tic relations intuitively and several effective algo-
rithms for inference are developed. This paper re-
ports a now ongoing work in its design stage which
provides a vocabulary for representing probabilistic
knowledge in a RDF graph which is to be mapped
to a Bayesian Network to do inference on it.

1 Introduction

In the real world, especially in the scientific fields like Life
Science, or in applications like contents classification and rec-
ommendation, it is often the case that relationship between
resources holds probabilistically, or we can make statements
only with uncertainty. Such relationships can be well de-
scribed with probabilistic model. And probabilistic inference
will be of special importance when one needs to know how
much we can say with what we know incompletely.

In this position paper, I report my ongoing work which pro-
vides a vocabulary for representing probabilistic knowledge
in a RDF graph. I introduce Bayesian Networks and list the
requirements for the representing language and candidate vo-
cabulary.

2 Bayesian Network

A Bayesian Network(BN) (Pearl 88) [1] is a graphical model
to represent probabilistic relations. It is a directed acyclic
graph (DAG), representing probabilistic dependencies among
a set of propositions. A node represents a set of exhaustive
and exclusive set of propositions (called ’variable’ or ’par-
tition’). A link represents a direct dependency between the
variables. Each node is accompanied with a conditional prob-
ability table (CPT) that represents the probabilistic relation-
ship between the variables. The posterior probability distribu-
tions ("beliefs”)for each variable could be calculated by prop-
agating beliefs.

Figure 1 shows an example illustration of a BN (CPTs are
not shown). It has 5 nodes and 5 links connecting them.

Advantages of employing BN are among others:
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MetastaticCancer,

HeadAche

Figure 1: example Bayesian Network

o the relations are expressed by a graph, which is a famil-
iar notion in the Semantic Web, and thus intuitive and
easy to understand

o cffective calculation algorithms (including simulation
methods) have been developed

3 Requirements for the representation
language

The aim of this work is not to just represent Bayesian net-
works in the Semantic Web, but to get a language (or exten-
sion vocabulary) which can describe probabilistic relations in
a way that is Semantic Web compatible and easy to map to
a BN. It is to put together the distributed information in the
Semantic Web, and do probabilistic inference in the BN.

The components of a BN are nodes and links and CPT’s
attached to the nodes. A node represents a set of exhaustive
and mutually exclusive propositions (called partition).

The representation language should be able to express:

e a partition, i.e. a set of exhaustive and exclusive propo-
sitions

e propositions in such a way that they are distinguished
from ground facts

e a probability with which a proposition holds
with/without certain conditions

4 Vocabulary for RDF representation

RDF is a W3C standard as one of the fundamental building
blocks of the Semantic Web. By representing probabilistic



relations in RDF, one gets advantage of reusing existing vo-
cabularies and tools for RDF processing, and one can treat
the probabilistic relations themselves as resources and incor-
porate them into RDF graphs.

To provide a vocabulary that satisfy the requirements
above, [ introduced the following classes and predicates:

classes prob:Partition,
prob:ProbabilsticStatement,
prob:Clause, prob:Probability,

predicates prob:predicate,
prob:hasProbability, prob:condition,
prob:case, prob:about

Details are omitted because of the limit of the space. De-
tails are to be available at<thttp://www.w3.0rg/2005/08/08-
prob/ .

Points to note are;

¢ Conditions are linked with prob:Partition’s, not
with each cases.

e Introduction of prob:Clause’s
prob:Clause is a generalization of the RDF
reification. prob:Clauserepresents has one
prob:predicate and zero or more “terms.” (cf. the
pattern 2 of N-ary relationship representations in [9])

The following is an example graph which represents a
probabilistic relation: “if cond?, then casel has probability
probl and case2 has probability prob2” (in a Turtle [2] seri-
alization)

[a prob:Partition;

prob:condition :cond0;

prob:case
[a prob:ProbabilisticStatement;
preob:about :casel;
prob:hasProbability :probl],
[a prob:ProbabilisticStatement;
prob:about :case2;
prob:hasProability :prob2].

I's

5 Related works

(Ding & Peng 2004) [4] and (Gu, Pung & Zhang 2004) [5]
are close works to this. They proposes to augment OWL to
allow probabilistic markups, and provides a set of transfor-
mation rules to convert the probabilistically annotated OWL
ontology into a BN.

(Holi & Hyvonen 2004) [6] is an attempt to express and
calculate overlapping of concepts in RDF(S) and OWL. using
BN.

Works in combinatorial use of BNs and Description Log-
ics includes, among others, (Koller, Levy & Pfeffer 1997)
[7] which presents P-CLLASSIC; a probabilistic version of the
Description Logic CLLASSIC, and (Yelland 2000) [8] which
incorporates Description Logics into BNs.

While others address T-Box knowledge, (Fukushige
2004)[3] proposes a method to encode probabilistic relations
in A-Box, which is in the same direction with this work.

6 Conclusion and future works

This position paper reported a ongoing work which provides a
vocabulary for representing probabilistic knowledge in a RDF
graph.

Open issues (other than implementing issues) include:

¢ Relationship with rule languages
¢ How to standardize Query Languages against BN store

¢ How tolearmn BNs from data or/and partial description in
RDF.

# How to deal with / avoid cyclic probabilistic description
in RDF

# How to deal with continuous probabilistic distributions

¢ Examination of computational complexity
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Abstract

There has been considerable debate as to the merits
and the applicability of probabilistic or statistical
reasoning to Semantic Web. Much of this debate
seems to have centered on the applicability of sta-
tistical methods in a supposedly deterministic set-
ting. In this paper, we argue that statistical reason-
ing (“reasoning with uncertainty”) need not be a
substitute for traditional Description Logic (DL) /
First-Order Logic (FOL) reasoning, instead statisti-
cal methods can serve as a complement to logic-
based reasoning systems in two ways: (i) Offer a
meta-reasoning (or audit) mechanism to validate
logical reasoning, and (ii) Act as a “filler” where
Ontological information either does not exist, or is
insufficient to reason conclusively.

1

Much of the Semantic Web effort has focused on the design
and development of Ontologies and related technologies.
This approach presupposes that a critical mass of Ontologies
will exist that can sufficiently and accurately respond to
reasoning queries. As Sir Tim Berners-Lee puts it [Berners-
Lee, 1998]: "The choice of classical logic for the Semantic
web is not an arbitrary choice among equals. Classical
logic is the only way that inference can scale across the
web."

Introduction

However, a pure logic-based approach looks increasingly
implausible given the paucity of Ontologies and the diffi-
culty in constructing and maintaining Ontologies. Just like
the World Wide Web (WWW) had a ready and mature plat-
form to run on i.e. the Internet - which had been in existence
for a long time prior to the emergence of the WWW, we feel
that the Semantic Web needs an underlying platform, upon
which Ontologies can function and interoperate.

We argue that this platform should be a web of statistical
“metadata” — which expresses semantic relations in prob-
abilistic terms. Such systems (e.g. Bayesian Networks,
Probabilistic Relational Models) have also been in existence
for a while and are used in various Machine Learning and
Al applications such as Machine Vision, Speech Recogni-
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tion, and Robotics etc. The Semantic Web would do well to
re-use some of these efforts in building this underlying
framework.

2 Ontologies and Probabilistic Models

We introduce the notion that Probabilistic Graph Models
(PGM) or Bayesian Networks can be viewed as fuzzy On-
tologies; conversely an Ontology can be viewed as a crisper
Bayesian Networks. In our proposed architecture, there may
not be a clear dividing line between them. A good way of
visualizing this relation would be to view Ontologies and
Bayesian Networks as ships floating in a sea of statistical
“metadata”. We use this metaphor to describe the notion
that the sea of statistical metadata fills-in the gaps between
the islands of Ontologies. Lately there have been some ef-
forts to develop Probabilistic Ontologies by annotating
OWL or RDF Ontologies with probabilistic information e.g.
BayesOWL [Ding,Peng 2004]. We argue against this ap-
proach, and suggest that probabilistic and logic-based rea-
soning approaches should be viewed as orthogonal to each
other. It makes most sense to keep the Ontological informa-
tion separate from the statistical data, along the lines of how
the WWW operates - in which an HTML page links to a
“FTP” site or a “mailto” to an email hyperlink and the nec-
essary protocols invoked only when clicked.

Figure 1 illustrates a hierarchical mechanism of aligned On-
tologies and Bayesian Networks. At the very top are the top-
level Ontologies on which there is general agreement and
acceptance, at the bottom are the fuzzier, grayer-scale
Bayesian Networks which represent relations between re-
sources using probabilistic mechanisms.

Ontological ~ Abstract Crisp

..... N A R

= vy Y
| | | | | | Bayesian Details  Fuzzy

Figure 1: Ontologies vis-a-vis Bayesian Networks




We suggest, that probabilistic (or statistical) information be
encoded using any of the widely accepted Bayesian Inter-
change Formats such as XML-BIF [Cozman, 1998], or Mi-
crosoft Research’s XBN [Microsoft, 1998] or Hugin.net
[Jensen, 2004] format. We propose that the Ontological
model encapsulate what it is designed for - expressing logi-
cal relations between resources, and the probabilistic model
express the statistical relation between them. We do not see
a need to mix-and-match as they offer very different views
on the same information-set and are perceptually orthogo-
nal.

3 A Hybrid Reasoning Model

Reasoning using Ontologies is based on predicate logic and
belongs in the classical tradition of monotonic deductive
reasoning i.e. propositions are either true or false. But this
proposed framework provides a mechanism for handling
fuzzier, incomplete and inaccurate inputs. In this model,
reasoning can be performed using a “bottom-up” approach
where a query unanswered by a pure Ontological match is
extended further up the hierarchy (Fig 1.) until all required
information is found. An adjunct application might be to
validate traditional reasoning with a mathematical confi-
dence level (meta-reasoning).

Some examples of the reasoning activities possible using
this system are:

1. Deductive Reasoning: Deductive reasoning allows a
system to deduce information given a set of (possibly
incomplete and erroneous) information. For example, it
can deduce that the best course to learn “Machine Vi-
sion”, “Genomics” and ‘“Political Science” at MIT is
most probably “6.804] Computational Cognitive Sci-
ence” even though the course does not directly teach
Political Science. It is making a best-guess fit for the
requirements [OCW, 2005].

Abductive Reasoning: Abductive reasoning allows a
system to infer the possible causes for a certain effect.
For example, the possible courses for learning Artificial
Intelligence at MIT are 6.803, 6.825 etc. This is the
equivalent of diagnostic reasoning in Bayesian Net-
works [OCW, 2005].

Monotonic reasoning, non-monotonic reasoning and
default values: Traditional DL-based Ontologies can
represent information for monotonic reasoning. For ex-
ample, one might declare that Universities in the US
have a GPA scale of 4.0, but MIT uses a 5.0 GPA scale
— so the system monotonically cannot reason with that
information unless it has been explicitly encoded.

This kind of non-monotonic reasoning is possible with the
proposed approach.
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4 Conclusion

“Reasoning with Uncertainty” is probably a misnomer to
describe the efforts required in this area - a more appropriate
phraseology would be “reasoning without certainty”. While
the difference may seem pedantic, the underlying notion is
that “uncertainty” is not a state unto itself, but merely the
absence of certainty. In a Semantic Web sense, it is a state
where Ontological information is non-existent, incomplete
or inconclusive. Statistical reasoning could therefore be the
bedrock upon which DL/FOL based querying and reasoning
can be performed.

This means that the semantic web can operate in areas cur-
rently out-of-bounds because of a lack of Ontological in-
formation. We therefore hypothesize that statistical “meta-
data” could be the building-block of the Semantic Web lead-
ing to better and more accurate reasoning mechanisms.
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